
MATLAB®

Graphics

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Graphics
© COPYRIGHT 1984–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2006 Online only New for MATLAB® 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB® 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB® 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB® 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB® 7.6 (Release 2008a)

This publication was previously part of the
Using MATLAB® Graphics User Guide.

October 2008 Online only Revised for MATLAB® 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB® 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB® 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB® 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB® 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB® 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB® 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB® 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)
September 2013 Online only Revised for Version 8.2 (Release 2013b)
March 2014 Online only Revised for Version 8.3 (Release 2014a)
October 2014 Online only Revised for Version 8.4 (Release 2014b)

v

Contents

Plots and Plotting Tools
1

Types of MATLAB Plots . 1-2
Two-Dimensional Plotting Functions 1-2
Three-Dimensional Plotting Functions 1-3

Create Graph Using Plots Tab . 1-6

Customize Graph Using Plot Tools . 1-8
Open Plot Tools . 1-8
Customize Objects in Graph . 1-9
Control Visibility of Objects in Graph 1-10
Add Annotations to Graph . 1-10
Close Plot Tools . 1-10

Create Subplots Using Plot Tools . 1-11
Create Simple Line Plot and Open Plot Tools 1-11
Create Upper and Lower Subplots 1-11
Add Data to Lower Subplot . 1-12
Add New Plot Without Overwriting Existing Plot 1-13

Basic Plotting Commands
2

Create 2-D Graph and Customize Lines 2-2
Create 2-D Line Graph . 2-2
Create Graph in New Figure Window 2-3
Plot Multiple Lines . 2-4
Colors, Line Styles, and Markers . 2-5
Specify Line Style . 2-6
Specify Different Line Styles for Multiple Lines 2-6

vi Contents

Specify Line Style and Color . 2-7
Specify Line Style, Color, and Markers 2-8
Plot Only Data Points . 2-10

Add Title, Axis Labels, and Legend to Graph 2-12

Change Axis Limits of Graph . 2-18

Change Tick Marks and Tick Labels of Graph 2-22

Display Grid Lines on 2-D Graph . 2-26
Display Major and Minor Grid Lines 2-26
Display Grid Lines in Single Direction 2-29
Change Grid Line Style . 2-31

Add Plot to Existing Graph . 2-34

Create Figure with Multiple Graphs Using Subplots 2-37

Create Graph with Two y-Axes . 2-42

Display Markers at Specific Data Points on Line Graph . . 2-47

Plot Imaginary and Complex Data . 2-49

Data Exploration Tools
3

Ways to Explore Graphical Data . 3-2
Introduction . 3-2
Types of Tools . 3-2

Display Data Values Interactively . 3-4
What Is a Data Cursor? . 3-4
Enabling Data Cursor Mode . 3-4
Display Style — Datatip or Cursor Window 3-12
Selection Style — Select Data Points or Interpolate Points on

Graph . 3-13
Exporting Data Value to Workspace Variable 3-13

vii

Zooming in Graphs . 3-15
Zooming in 2-D and 3-D . 3-15
Zooming in 2-D Views . 3-15

Panning — Shifting Your View of the Graph 3-17

Rotate in 3-D . 3-18
Enabling 3-D Rotation . 3-18
Selecting Predefined Views . 3-18
Rotation Style for Complex Graphs 3-19
Undo/Redo — Eliminating Mistakes 3-21

Annotating Graphs
4

Change Mapping of Data Values into the Colormap 4-2

Change Colorbar Width . 4-5

Include Subset of Objects in Graph Legend 4-8

Display One Legend Entry for Group of Objects 4-11

Specify Legend Descriptions During Line Creation 4-14

Add Text to Specific Points on Graph 4-17
Add Text to Three Data Points on Graph 4-17
Determine Minimum and Maximum Points and Add Text . . 4-20

Include Variable Values in Graph Text 4-23
Include Variable Value in Axis Label 4-23
Include Loop Variable Value in Graph Title 4-24

Text with Mathematical Expression Using LaTeX 4-26
Add Text with Integral Expression to Graph 4-26
Add Text with Summation Symbol to Graph 4-28

Text with Greek Letters and Special Characters 4-31
Include Greek Letters in Graph Text 4-31
Include Superscripts and Annotations in Graph Text 4-32

viii Contents

Add Annotations to Graph Interactively 4-35
Add Annotations . 4-35
Pin Annotations to Points in Graph 4-36

Add Text to Graph Interactively . 4-38
Add Title and Axis Labels . 4-38
Add Legend . 4-40
Add Annotations to Graph . 4-42

Add Colorbar to Graph Interactively 4-44
Add Colorbar . 4-44
Change Colorbar Location . 4-45
Change Colormap . 4-46

Align Objects in Graph Using Alignment Tools 4-48

Creating Specialized Plots
5

Types of Bar Graphs . 5-2

Modify Baseline of Bar Graph . 5-9

Overlay Bar Graphs . 5-13

Overlay Line Plot on Bar Graph Using Different Y-Axes . . 5-16

Color 3-D Bars by Height . 5-20

Compare Data Sets Using Overlayed Area Graphs 5-23

Offset Pie Slice with Greatest Contribution 5-28

Add Legend to Pie Chart . 5-30

Label Pie Chart With Text and Percent Values 5-33
Create Pie Chart . 5-33
Store Precalculated Percent Values 5-34
Combine Percent Values and Additional Text 5-35
Determine Horizontal Distance to Move Each Label 5-36

ix

Position New Label . 5-37

Data Cursors with Histograms . 5-39

Combine Stem Plot and Line Plot . 5-41

Overlay Stairstep Plot and Line Plot 5-46

Display Quiver Plot Over Contour Plot 5-49

Projectile Path Over Time . 5-51

Label Contour Plot Levels . 5-53

Change Fill Colors for Contour Plot 5-55

Highlight Specific Contour Levels . 5-57

Contour Plot in Polar Coordinates . 5-60

Animation Techniques . 5-66
Updating the Screen . 5-66
Optimizing Performance . 5-66

Trace Marker Along Line . 5-68

Move Group of Objects Along Line . 5-71

Animate Graphics Object . 5-75

Line Animations . 5-79

Record Animation for Playback . 5-82
Record and Play Back Movie . 5-82
Capture Entire Figure for Movie . 5-83

x Contents

Displaying Bit-Mapped Images
6

Working with Images in MATLAB Graphics 6-2
What Is Image Data? . 6-2
Supported Image Formats . 6-3
Functions for Reading, Writing, and Displaying Images 6-4

Image Types . 6-5
Indexed Images . 6-5
Intensity Images . 6-7
RGB (Truecolor) Images . 6-8

8-Bit and 16-Bit Images . 6-10
Indexed Images . 6-10
Intensity Images . 6-11
RGB Images . 6-11
Mathematical Operations Support for uint8 and uint16 6-12
Other 8-Bit and 16-Bit Array Support 6-12
Converting an 8-Bit RGB Image to Grayscale 6-13
Summary of Image Types and Numeric Classes 6-16

Read, Write, and Query Image Files 6-18
Working with Image Formats . 6-18
Reading a Graphics Image . 6-19
Writing a Graphics Image . 6-19
Subsetting a Graphics Image (Cropping) 6-20
Obtaining Information About Graphics Files 6-21

Displaying Graphics Images . 6-22
Image Types and Display Methods 6-22
Controlling Aspect Ratio and Display Size 6-24

The Image Object and Its Properties 6-27
Image CData . 6-27
Image CDataMapping . 6-27
XData and YData . 6-28
Add Text to Image Data . 6-30
Additional Techniques for Fast Image Updating 6-32

Printing Images . 6-34

xi

Convert Image Graphic or Data Type 6-35

Printing and Saving
7

Overview of Printing and Exporting 7-2
Print and Export Operations . 7-2
Graphical User Interfaces . 7-2
Command Line Interface . 7-3
Specifying Parameters and Options 7-4
Default Settings and How to Change Them 7-5

Bitmap vs. Vector Formats . 7-8
Choosing a Format . 7-8
How Renderer Affects Format . 7-9
Controlling Graphics Output . 7-9

How to Print or Export . 7-10
Using Print Preview . 7-10
Printing a Figure . 7-13
Printing to a File . 7-15
Exporting to a File . 7-17
Exporting to the Windows or Macintosh Clipboard 7-25

Printing and Exporting Use Cases . 7-30
Printing a Figure at Screen Size . 7-30
Printing with a Specific Paper Size 7-31
Printing a Centered Figure . 7-31
Exporting in a Specific Graphics Format 7-32
PostScript and PDF Font Translations 7-33
Exporting in EPS Format with a TIFF Preview 7-34
Exporting a Figure to the Clipboard 7-34

Change Figure Settings . 7-37
Parameters that Affect Printing . 7-37
Selecting the Figure . 7-39
Selecting the Printer . 7-39
Setting the Figure Size and Position 7-41
Setting the Paper Size or Type . 7-44
Setting the Paper Orientation . 7-46

xii Contents

Selecting a Renderer . 7-48
Setting the Resolution . 7-50
Setting the Axes Ticks and Limits 7-52
Setting the Background Color . 7-54
Setting Line and Text Characteristics 7-55
Setting the Line and Text Color . 7-58
Specifying a Colorspace for Printing and Exporting 7-61
Excluding User Interface Controls from Printed Output . . . 7-63
Producing Uncropped Figures . 7-64

Troubleshooting . 7-65
Introduction . 7-65
Common Problems . 7-65
Printing Problems . 7-66
Exporting Problems . 7-69
General Problems . 7-72

Saving Figures . 7-75
Saving and Loading Graphs . 7-75
FIG-File Format . 7-76
Saving Figures From the Menu . 7-76
Saving to a Different Format — Exporting Figures 7-77
Printing Figures . 7-78
Generating a MATLAB File to Recreate a Graph 7-79

Axes Active Position
8

Axes Resize to Accommodate Titles and Labels 8-2
Axes Layout . 8-2
Properties Controlling Axes Size . 8-2
Using OuterPosition as the ActivePositionProperty 8-5
ActivePositionProperty = OuterPosition 8-5
ActivePositionProperty = Position . 8-6
Axes Resizing in Subplots . 8-7

xiii

Controlling Graphics Output
9

Control Graph Display . 9-2
What You Can Control . 9-2
Targeting Specific Figures and Axes 9-2

Prepare Figures and Axes for Graphs 9-5
Behavior of MATLAB Plotting Functions 9-5
How the NextPlot Properties Control Behavior 9-5
Control Behavior of User-Written Plotting Functions 9-7

Use newplot to Control Plotting . 9-9

Responding to Hold State . 9-12

Prevent Access to Figures and Axes 9-14
Why Prevent Access . 9-14
How to Prevent Access . 9-14

Default Values
10

Default Property Values . 10-2
Predefined Values for Properties . 10-2
Specify Default Values . 10-2
Where in Hierarchy to Define Default 10-3
List Default Values . 10-3
Set Properties to the Current Default 10-4
Remove Default Values . 10-4
Set Properties to Factory-Defined Values 10-4
List Factory-Defined Property Values 10-4
Reserved Words . 10-5

Default Values for Automatically Calculated Properties . . 10-6
What Are Automatically Calculated Properties 10-6
Default Values for Automatically Calculated Properties . . . 10-6

How MATLAB Finds Default Values 10-8

xiv Contents

Factory-Defined Property Values . 10-9

Define Default Line Styles . 10-10

Multilevel Default Values . 10-12

Graphics Object Callbacks
11

Callbacks — Programmed Response to User Action 11-2
What Are Callbacks? . 11-2
Window Callbacks . 11-2

Callback Definition . 11-4
Ways to Specify Callbacks . 11-4
Callback Function Syntax . 11-4
Related Information . 11-5
Define a Callback as a Default . 11-6

Button Down Callback Function . 11-7
When to Use a Button Down Callback 11-7
How to Define a Button Down Callback 11-7

Define a Context Menu . 11-9
When to Use a Context Menu . 11-9
How to Define a Context Menu . 11-9

Define an Object Creation Callback 11-11
Related Information . 11-12

Define an Object Deletion Callback 11-13

Capturing Mouse Clicks . 11-14
Properties That Control Response to Mouse Clicks 11-14
Combinations of PickablePart/HitTest Values 11-14
Passing Mouse Click Up the Hierarchy 11-15

Pass Mouse Click to Group Parent 11-18
Objective and Design . 11-18
Object Hierarchy and Key Properties 11-18

xv

MATLAB Code . 11-19

Pass Mouse Click to Obscured Object 11-21

Graphics Objects
12

Graphics Objects . 12-2
MATLAB Graphics Objects . 12-2
Graphs Are Composed of Specific Objects 12-2
Organization of Graphics Objects . 12-2

Features Controlled by Graphics Objects 12-7
Purpose of Graphics Objects . 12-7
Figures . 12-7
Axes . 12-8
Objects That Represent Data . 12-9
Group Objects . 12-10
Annotation Objects . 12-11

Group Objects
13

Object Groups . 13-2

Create Object Groups . 13-3
Parent Specification . 13-4
Visible and Selected Properties of Group Children 13-4

Transforms Supported by hgtransform 13-5
Transforming Objects . 13-5
Rotation . 13-5
Translation . 13-6
Scaling . 13-6
The Default Transform . 13-7
Disallowed Transforms: Perspective 13-7
Disallowed Transforms: Shear . 13-7

xvi Contents

Absolute vs. Relative Transforms . 13-8
Combining Transforms into One Matrix 13-8
Undoing Transform Operations . 13-9

Rotate About an Arbitrary Axis . 13-10
Translate to Origin Before Rotating 13-10
Rotate Surface . 13-10

Nest Transforms for Complex Movements 13-14

Control Legend Content
14

Control Legend Content . 14-2
Properties for Controlling Legend Content 14-2
Updating a Legend . 14-3

Working with Graphics Objects
15

Graphics Object Handles . 15-2
What You Can Do with Handles . 15-2
What You Cannot Do with Handles 15-3

Preallocate Arrays . 15-4

Test for Valid Handle . 15-5

Handles in Logical Expressions . 15-6
If Handle Is Valid . 15-6
If Result Is Empty . 15-6
If Handles Are Equal . 15-7

Graphics Arrays . 15-9

xvii

Object Identification
16

Special Object Identifiers . 16-2
Getting Handles to Special Objects 16-2
The Current Figure, Axes, and Object 16-2
Callback Object and Callback Figure 16-4

Find Objects . 16-5
Find Objects with Specific Property Values 16-5
Find Text by String Property . 16-5
Use Regular Expressions with findobj 16-7
Limit Scope of Search . 16-9

Copy Objects . 16-11
Copying Objects with copyobj . 16-11
Copy Single Object to Multiple Destinations. 16-11
Copying Multiple Objects . 16-12

Delete Graphics Objects . 16-14
How to Delete Objects . 16-14
Handles to Deleted Objects . 16-15

Optimize Performance of Graphics Programs
17

Finding Code Bottlenecks . 17-2

What Affects Code Execution Speed 17-4
Potential Bottlenecks . 17-4
How to Improve Performance . 17-4

Judicious Object Creation . 17-6
Object Overhead . 17-6
Do Not Create Unnecessary Objects 17-6
Use NaNs to Simulate Multiple Lines 17-7
Modify Data Instead of Creating New Objects 17-7

xviii Contents

Avoid Repeated Searches for Objects 17-8
Limit Scope of Search . 17-8

Screen Updates . 17-10
MATLAB Graphics System . 17-10
Managing Updates . 17-11

Getting and Setting Properties . 17-12
Automatically Calculated Properties 17-12
Inefficient Cycles of Sets and Gets 17-13
Changing Text Extent to Rotate Labels 17-14

Avoid Updating Static Data . 17-15
Segmenting Data to Reduce Update Times 17-15

Animating Line Graphs . 17-17
Interactive Lines with Markers . 17-17

Transforming Objects Efficiently . 17-18

Use Low-Level Functions for Speed 17-19

Using drawnow Efficiently . 17-20
What Does drawnow Do? . 17-20
How to Use drawnow . 17-21
Achieve a Specific Frame Rate . 17-21

System Requirements for Graphics 17-23
Recommended System Requirements 17-23
Upgrade Your Graphics Drivers . 17-23
Features with OpenGL Requirements 17-24

Workarounds for Older Graphics Hardware 17-25

set and get
18

Access Property Values . 18-2
Object Properties and Dot Notation 18-2
Graphics Object Variables Are Handles 18-4

xix

Listing Object Properties . 18-6
Modify Properties with set and get 18-6
Multi Object/Property Operations . 18-7

Using Axes Properties
19

Axes Aspect Ratio . 19-2
3-D Views . 19-3
Additional Commands for Setting Aspect Ratio 19-5

Display Text Outside Axes . 19-6

Overlay Axes with Different Sizes . 19-9

Graph with Multiple x-Axes and y-Axes 19-12

Automatically Calculated Properties 19-16

Line Styles Used for Plotting — LineStyleOrder 19-20

xx

1

Plots and Plotting Tools

• “Types of MATLAB Plots” on page 1-2
• “Create Graph Using Plots Tab” on page 1-6
• “Customize Graph Using Plot Tools” on page 1-8
• “Create Subplots Using Plot Tools” on page 1-11

1 Plots and Plotting Tools

1-2

Types of MATLAB Plots

In this section...

“Two-Dimensional Plotting Functions” on page 1-2
“Three-Dimensional Plotting Functions” on page 1-3

MATLAB® offers a variety of data plotting functions plus a set of GUI tools to create and
modify graphic displays. The following two tables classify and illustrate the kinds of plots
you can create with MATLAB. They include line, bar, area, direction and vector field,
radial, and scatter graphs.

When you execute a plotting function, MATLAB clears and replaces the current graph,
if one exists. The function resets axis limits and other properties so that each graph is
displayed appropriately.

Two-Dimensional Plotting Functions

This table shows MATLAB 2-D plotting functions. Click any icon to see the
documentation for that function.

Line Graphs Bar Graphs Area Graphs Direction
Graphs

Radial Graphs Scatter Graphs

plot bar (grouped) area feather polar scatter

plotyy barh

(grouped)
pie quiver rose spy

loglog bar (stacked) fill comet compass plotmatrix

 Types of MATLAB Plots

1-3

Line Graphs Bar Graphs Area Graphs Direction
Graphs

Radial Graphs Scatter Graphs

semilogx barh

(stacked)
contourf ezpolar

semilogy hist image

stairs pareto pcolor

contour errorbar ezcontourf

ezplot stem

ezcontour

Three-Dimensional Plotting Functions

This table shows MATLAB 3-D and volume plotting functions. Some functions generate
3-D data (cylinder, ellipsoid, sphere) that you can use to generate geometric

1 Plots and Plotting Tools

1-4

shapes on which you can superimpose your data. Click any picture in the table to see the
documentation for that function.

Line Graphs Mesh Graphs
and Bar
Graphs

Area
Graphs and
Constructive

Objects

Surface
Graphs

Direction
Graphs

Volumetric
Graphs

plot3 mesh pie3 surf quiver3 scatter3

contour3 meshc fill3 surfl comet3 coneplot

contourslice meshz patch surfc streamslice streamline

ezplot3 ezmesh cylinder ezsurf streamribbon

waterfall stem3 ellipsoid ezsurfc streamtube

 bar3 sphere

 bar3h

 Types of MATLAB Plots

1-5

Line Graphs Mesh Graphs
and Bar
Graphs

Area
Graphs and
Constructive

Objects

Surface
Graphs

Direction
Graphs

Volumetric
Graphs

1 Plots and Plotting Tools

1-6

Create Graph Using Plots Tab

This example shows how to create a 2-D line plot interactively using the Plots tab in the
MATLAB toolstrip. The Plots tab shows a gallery of supported plot types based on the
variables you select from your workspace.

1 In the Command Window, define x as a vector of 50 linearly spaced values between 1
and 10. Define y as the sine function.

x = linspace(1,10,50);

y = sin(x);

2 In the Workspace panel in the MATLAB desktop, select the variables to plot. Use
Ctrl + click to select multiple variables.

3 Select the 2-D line plot from the gallery on the Plots tab. For additional plot types,
click the arrow at the end of the gallery.

MATLAB creates the plot and displays the plotting commands at the command line.

plot(x,y)

See Also
linspace | plot | sin

 Create Graph Using Plots Tab

1-7

Related Examples
• “Customize Graph Using Plot Tools” on page 1-8

1 Plots and Plotting Tools

1-8

Customize Graph Using Plot Tools

To customize a graph interactively you can use the plot tools. The plot tools interface
consists of three different panels: the Property Editor, the Plot Browser, and the Figure
Palette. Use these panels to add different types of customizations to your graph.

In this section...

“Open Plot Tools” on page 1-8
“Customize Objects in Graph” on page 1-9
“Control Visibility of Objects in Graph” on page 1-10
“Add Annotations to Graph” on page 1-10
“Close Plot Tools” on page 1-10

Open Plot Tools

To open the plot tools use the plottools command or click the Show Plot Tools icon
in the figure window. For example, define variables x and y in the Command Window,
create a line plot and open the plot tools.

x = linspace(1,10,25);

y = sin(x);

plot(x,y)

plottools

 Customize Graph Using Plot Tools

1-9

MATLAB creates a plot of y versus x and opens the plot tools.

Customize Objects in Graph

To customize objects in your graph, you can set their properties using the Property
Editor. For example, click the axes to display a subset of common axes properties in the
Property Editor. Specify a title and an x-axis label by typing text in the empty fields.

Click other objects in the graph to display and edit a subset of their common properties in
the Property Editor. Access and edit more object properties by clicking More Properties
to open the Property Inspector.

1 Plots and Plotting Tools

1-10

Note: You cannot use the Property Editor to access properties of objects that you cannot
click, such as a light or a uicontextmenu. You must store the object handles and use the
inspect command.

Control Visibility of Objects in Graph

To control the visibility of objects in the graph, you can use the Plot Browser. The Plot
Browser lists all the axes and plots in the figure. The check box next to each object
controls the object's visibility.

• Hide an object without deleting it by deselecting its box in the Plot Browser.
• Delete an object by right-clicking it and selecting Delete.

Add Annotations to Graph

To add annotations to the graph, such as arrows and text, you can use the Annotations
panel in the Figure Palette.

Close Plot Tools

To remove the plot tools from the figure, you can use the Hide Plot Tools icon , or type
plottools('off') in the Command Window.

Use the View menu to show or hide specific plot tools panels. If you change the layout of
the plot tools, then the layout persists the next time you open the plot tools.

See Also
annotation | figurepalette | inspect | plot | plotbrowser | plottools |
propertyeditor

Related Examples
• “Create Subplots Using Plot Tools” on page 1-11
• “Generating a MATLAB File to Recreate a Graph” on page 7-79

 Create Subplots Using Plot Tools

1-11

Create Subplots Using Plot Tools

This example shows how to create a figure with multiple graphs interactively and add
different types of plots to each graph using the plot tools.

In this section...

“Create Simple Line Plot and Open Plot Tools” on page 1-11
“Create Upper and Lower Subplots” on page 1-11
“Add Data to Lower Subplot” on page 1-12
“Add New Plot Without Overwriting Existing Plot” on page 1-13

Create Simple Line Plot and Open Plot Tools

Define variables x and y in the Command Window and create a line plot using the plot
function. Open the plot tools using the plottools command or by clicking the Show Plot

Tools icon in the figure window.

x = linspace(1,10,25);

y = sin(x);

plot(x,y)

plottools

MATLAB creates a plot of y versus x and opens the plot tools.

Create Upper and Lower Subplots

Create upper and lower subplots using the Figure Palette panel in the plot tools. Choose
a subplot layout for two horizontal graphs using the 2-D grid icon .

1 Plots and Plotting Tools

1-12

Add Data to Lower Subplot

Create a scatter plot of y versus x in the lower subplot using the Figure Palette.

1 Click the lower subplot axes to make it the current axes.
2 Select x and y in the Variables panel of the Figure Palette. Select multiple variables

using Ctrl + click.
3 Right-click one of the variables to display a context menu containing a list of possible

plot types based on the variables selected.

 Create Subplots Using Plot Tools

1-13

4 Select scatter(x,y) from the menu. (The Plot Catalog menu option lists
additional plot types.)

MATLAB creates a scatter plot in the lower subplot and displays the commands used to
create the plot in the Command Window.

scatter(x,y)

Note: Adding a plot to an axes using the Variables panel overwrites existing plots in that
axes.

Add New Plot Without Overwriting Existing Plot

Add a bar graph of cos(x) versus x to the upper subplot without erasing the existing
line plot. Use the Add Data option in the Plot Browser.

1 Plots and Plotting Tools

1-14

1 Open a dialog box by clicking the upper subplot, and then click the Add Data button
at the bottom of the Plot Browser.

2 Use the drop-down menu to select a bar graph as the plot type.
3 Specify the variables to plot by setting the X Data Source and Y Data Source

fields. Use the drop-down menu to specify X Data Source as the variable x. Since
cos(x) is not defined as a variable, type this expression into the empty field next to
Y Data Source.

4 Click OK. MATLAB adds a bar graph to the upper subplot.

 Create Subplots Using Plot Tools

1-15

See Also
bar | figurepalette | plot | plottools | propertyeditor | scatter | subplot

Related Examples
• “Add Colorbar to Graph Interactively” on page 4-44
• “Customize Graph Using Plot Tools” on page 1-8
• “Generating a MATLAB File to Recreate a Graph” on page 7-79

1-16

2

Basic Plotting Commands

• “Create 2-D Graph and Customize Lines” on page 2-2
• “Add Title, Axis Labels, and Legend to Graph” on page 2-12
• “Change Axis Limits of Graph” on page 2-18
• “Change Tick Marks and Tick Labels of Graph” on page 2-22
• “Display Grid Lines on 2-D Graph” on page 2-26
• “Add Plot to Existing Graph” on page 2-34
• “Create Figure with Multiple Graphs Using Subplots” on page 2-37
• “Create Graph with Two y-Axes” on page 2-42
• “Display Markers at Specific Data Points on Line Graph” on page 2-47
• “Plot Imaginary and Complex Data” on page 2-49

2 Basic Plotting Commands

2-2

Create 2-D Graph and Customize Lines

In this section...

“Create 2-D Line Graph” on page 2-2
“Create Graph in New Figure Window” on page 2-3
“Plot Multiple Lines” on page 2-4
“Colors, Line Styles, and Markers” on page 2-5
“Specify Line Style” on page 2-6
“Specify Different Line Styles for Multiple Lines” on page 2-6
“Specify Line Style and Color” on page 2-7
“Specify Line Style, Color, and Markers” on page 2-8
“Plot Only Data Points” on page 2-10

Create 2-D Line Graph

This example shows how to create a simple line graph. Use the linspace function to
define x as a vector of 100 linearly spaced values between 0 and .

x = linspace(0,2*pi,100);

Define y as the sine function evaluated at the values in x.

y = sin(x);

Plot y versus the corresponding values in x.

figure

plot(x,y)

 Create 2-D Graph and Customize Lines

2-3

Create Graph in New Figure Window

This example shows how to create a graph in a new figure window, instead of plotting
into the current figure.

Define x and y.

x = linspace(0,2*pi,25);

y = sin(x);

Create a stairstep plot of y versus x. Open a new figure window using the figure
command. If you do not open a new figure window, then by default, MATLAB® clears
existing graphs and plots into the current figure.

2 Basic Plotting Commands

2-4

figure % new figure window

stairs(x,y)

Plot Multiple Lines

This example shows how to plot more than one line by passing multiple x,y pairs to the
plot function.

Define y1 and y2 as sine waves with a phase shift.

x = linspace(0,2*pi,100);

y1 = sin(x);

y2 = sin(x-pi/4);

Plot the lines.

 Create 2-D Graph and Customize Lines

2-5

figure

plot(x,y1,x,y2)

plot cycles through a predefined list of line colors.

Colors, Line Styles, and Markers

To change the line color, line style, and marker type, add a line specification string to
the x,y pair. For example, adding the string, 'g:*', plots a green dotted line with star
markers. You can omit one or more options from the line specification, such as 'g:' for a
green dotted line with no markers. To change just the line style, specify only a line style
option, such as '--' for a dashed line.

For more information, see LineSpec (Line Specification).

2 Basic Plotting Commands

2-6

Specify Line Style

This example shows how to create a plot using a dashed line. Add the optional line
specification string, '--', to the x,y pair.

x = linspace(0,2*pi,100);

y = sin(x);

figure

plot(x,y,'--')

Specify Different Line Styles for Multiple Lines

 Create 2-D Graph and Customize Lines

2-7

This example shows how to plot two sine waves with different line styles by adding a line
specification string to each x,y pair.

Plot the first sine wave with a dashed line using '--'. Plot the second sine wave with a
dotted line using ':'.

x = linspace(0,2*pi,100);

y1 = sin(x);

y2 = sin(x-pi/4);

figure

plot(x,y1,'--',x,y2,':')

Specify Line Style and Color

2 Basic Plotting Commands

2-8

This example shows how to specify the line styles and line colors for a plot.

Plot a sine wave with a green dashed line using '--g'. Plot a second sine wave with a
red dotted line using ':r'. The elements of the line specification strings can appear in
any order.

x = linspace(0,2*pi,100);

y1 = sin(x);

y2 = sin(x-pi/4);

figure

plot(x,y1,'--g',x,y2,':r')

Specify Line Style, Color, and Markers

 Create 2-D Graph and Customize Lines

2-9

This example shows how to specify the line style, color, and markers for two sine waves.
If you specify a marker type, then plot adds a marker to each data point.

Define x as 25 linearly spaced values between 0 and . Plot the first sine wave with a
green dashed line and circle markers using '--go'. Plot the second sine wave with a red
dotted line and star markers using ':r*'.

x = linspace(0,2*pi,25);

y1 = sin(x);

y2 = sin(x-pi/4);

figure

plot(x,y1,'--go',x,y2,':r*')

2 Basic Plotting Commands

2-10

Plot Only Data Points

This example shows how to plot only the data points by omitting the line style option
from the line specification string.

Define the data x and y. Plot the data and display a star marker at each data point.

x = linspace(0,2*pi,25);

y = sin(x);

figure

plot(x,y,'*')

 Create 2-D Graph and Customize Lines

2-11

See Also
contour | LineSpec (Line Specification) | linspace | loglog | plot |
plotyy | scatter | semilogx | semilogy | stairs | stem

Related Examples
• “Add Title, Axis Labels, and Legend to Graph”
• “Change Axis Limits of Graph”
• “Change Tick Marks and Tick Labels of Graph”

2 Basic Plotting Commands

2-12

Add Title, Axis Labels, and Legend to Graph

This example shows how to add a title, axis labels and a legend to a graph using the
title, xlabel, ylabel and legend functions. By default, these functions add the text
to the current axes. The current axes is typically the last axes created or the last axes
clicked with the mouse.

Create Simple Line Plot

Define x as 100 linearly spaced values between and . Define y1 and y2 as sine
and cosine values of x. Create a line plot of both sets of data.

x = linspace(-2*pi,2*pi,100);

y1 = sin(x);

y2 = cos(x);

figure

plot(x,y1,x,y2)

 Add Title, Axis Labels, and Legend to Graph

2-13

Add Title

Add a title to the graph using the title function. Pass the title function a text string
with the desired title.

To display Greek symbols in a title, use the TeX markup. Use the TeX markup, \pi, to
display the Greek symbol .

title('Graph of Sine and Cosine Between -2\pi and 2\pi')

2 Basic Plotting Commands

2-14

Add Axis Labels

Add axis labels to the graph using the xlabel and ylabel functions. Pass these
functions a text string with the desired label.

xlabel('-2\pi < x < 2\pi') % x-axis label

ylabel('sine and cosine values') % y-axis label

 Add Title, Axis Labels, and Legend to Graph

2-15

Add Legend

Add a legend to the graph identifying each data set using the legend function. Pass the
legend function a text string description for each line. Specify legend descriptions in the
order that you plot the lines.

legend('y = sin(x)','y = cos(x)')

2 Basic Plotting Commands

2-16

Change Legend Location

Change the location of the legend on the graph by setting its location using one of the
eight cardinal or intercardinal directions. Display the legend at the bottom left corner of
the axes by specifying its location as 'southwest'.

To display the legend outside the axes, append outside to any of the directions, for
example, 'southwestoutside'.

legend('y = sin(x)','y = cos(x)','Location','southwest')

 Add Title, Axis Labels, and Legend to Graph

2-17

See Also
legend | linspace | title | xlabel | ylabel

Related Examples
• “Change Axis Limits of Graph”
• “Change Tick Marks and Tick Labels of Graph”
• “Add Plot to Existing Graph”

2 Basic Plotting Commands

2-18

Change Axis Limits of Graph

This example shows how to change the axis limits of a graph. By default, MATLAB®
chooses axis limits to encompass the data plotted.

Create Simple Line Plot

Define x as 200 linearly spaced values between -10 and 10. Define y as the sine of x with
an exponentially decreasing amplitude. Create a line plot of the data.

x = linspace(-10,10,200);

y = sin(4*x)./exp(x);

figure

plot(x,y)

 Change Axis Limits of Graph

2-19

Change Axis Limits

Change the axis limits by passing to the axis function a four-element vector of the form
[xmin,xmax,ymin,ymax], where xmin and xmax set the scaling for the x-axis, and
ymin and ymax set the scaling for the y-axis.

You also can change the axis limits using the xlim, ylim, and zlim functions. The
commands xlim([xmin,xmax]) and ylim([ymin,ymax]) produce the same result as
axis([xmin,xmax,ymin,ymax]).

Change the x-axis scaling to range from 0 to 10. Change the y-axis scaling to range from
-1 to 1.

axis([0,10,-1,1])

2 Basic Plotting Commands

2-20

Use Semiautomatic Axis Limits

Use an automatically calculated minimum x-axis limit by setting its value to -inf.
MATLAB® calculates the limit based on the data. Set the maximum x-axis limit to 10,
the minimum y-axis limit to -1, and the maximum y-axis limit to 1.

axis([-inf,10,-1,1])

 Change Axis Limits of Graph

2-21

MATLAB calculates the minimum limit for the x-axis based on the data. To use an
automatically calculated maximum limit, set the value to inf.

See Also
axis | linspace | plot | xlim | ylim

Related Examples
• “Change Tick Marks and Tick Labels of Graph”
• “Add Plot to Existing Graph”

2 Basic Plotting Commands

2-22

Change Tick Marks and Tick Labels of Graph

This example shows how to change the tick marks and the tick mark labels. MATLAB®
chooses tick mark locations based on the range of the data, and automatically uses
numeric labels at each tick mark.

Create Simple Line Chart

Define x as 200 linearly spaced values between -10 and 10. Define y as the cosine of x.
Plot the data.

x = linspace(-10,10,200);

y = cos(x);

figure

plot(x,y)

 Change Tick Marks and Tick Labels of Graph

2-23

Change Tick Marks

Change the location of the tick marks on the plot by setting the XTick and YTick
properties of the axes. Use gca to get the handle for the current axes. Define the tick
marks as a vector of increasing values. The values do not need to be equally spaced.

h = gca;

h.XTick = [-3*pi,-2*pi,-pi,0,pi,2*pi,3*pi];

h.YTick = [-1,-0.5,0,0.5,1];

2 Basic Plotting Commands

2-24

Change Tick Mark Labels

Specify tick mark labels by setting the XTickLabel and YTickLabel properties of the
axes. Set these properties using a cell array of strings with the desired labels. If you do
not specify enough text labels for all the tick marks, then MATLAB cycles through the
labels.

h.XTickLabel = {'-3pi','-2pi','-pi','0','pi','2pi','3pi'};

h.YTickLabel = {'min = -1','-0.5','0','0.5','max = 1'};

 Change Tick Marks and Tick Labels of Graph

2-25

See Also
gca | linspace | plot

Related Examples
• “Change Axis Limits of Graph”
• “Add Plot to Existing Graph”

2 Basic Plotting Commands

2-26

Display Grid Lines on 2-D Graph

In this section...

“Display Major and Minor Grid Lines” on page 2-26
“Display Grid Lines in Single Direction” on page 2-29
“Change Grid Line Style” on page 2-31

Display Major and Minor Grid Lines

This example shows how to display major and minor grid lines on a graph. Major grid
lines align with the tick mark locations. Minor grid lines appear between the tick marks.

Use grid on to display the major grid lines.

x = -10:10;

y = x.^2;

figure

plot(x,y)

grid on

 Display Grid Lines on 2-D Graph

2-27

Use grid minor to display the minor grid lines.

grid minor

2 Basic Plotting Commands

2-28

Use grid off to remove the grid lines.

grid off

 Display Grid Lines on 2-D Graph

2-29

Display Grid Lines in Single Direction

This example shows how to display grid lines in a single direction by setting axes
properties. The grid on command sets the XGrid, YGrid, and ZGrid axes properties.
The grid minor command sets the XMinorGrid, YMinorGrid, and ZMinorGrid
properties. Control the display of the grid lines for each individual axes by setting these
axes properties directly.

Display the grid lines in the x-direction, but not in the y-direction by setting the XGrid
axes property to 'on' and the YGrid axes property to 'off'.

x = -10:10;

y = x.^2;

2 Basic Plotting Commands

2-30

figure

plot(x,y)

ax = gca;

ax.XGrid = 'on';

ax.YGrid = 'off';

Display the minor grid lines in the x-direction, but not in the y-direction by setting the
XGridMinor axes property to 'on' and the YGridMinor axes property to 'off'.

ax.XMinorGrid = 'on';

ax.YMinorGrid = 'off';

 Display Grid Lines on 2-D Graph

2-31

Change Grid Line Style

This example shows how to change the grid line style using the GridLineStyle and
MinorGridLineStyle axes properties. Line style options are a solid line, '-', a dotted
line, ':', a dashed line, '--', a dash-dotted line, '-.'.

Create a line plot and display the major and minor grid lines.

x = -10:10;

y = x.^2;

figure

plot(x,y)

2 Basic Plotting Commands

2-32

grid on

grid minor

Specify a solid line for all the grid lines.

ax = gca;

ax.GridLineStyle = '-';

ax.MinorGridLineStyle = '-';

 Display Grid Lines on 2-D Graph

2-33

See Also
gca | grid | plot

Related Examples
• “Add Title, Axis Labels, and Legend to Graph”
• “Change Axis Limits of Graph”
• “Change Tick Marks and Tick Labels of Graph”

2 Basic Plotting Commands

2-34

Add Plot to Existing Graph

This example shows how to add a plot to an existing graph.

Plot of a sine wave along the domain [0,5].

x1 = linspace(0,5);

y1 = sin(x1);

figure % new figure window

plot(x1,y1)

 Add Plot to Existing Graph

2-35

Use hold on to retain the line plot and add a new plot to the graph. Add a stem plot
along the domain [0,8]. Then, use hold off to reset the hold state so that new plots
replace existing plots, which is the default behavior.

hold on

x2 = 0:0.5:8;

y2 = 0.5*sin(x2);

stem(x2,y2)

hold off % reset hold state

2 Basic Plotting Commands

2-36

MATLAB® rescales the axis limits each time a new plot is added to a graph.

See Also
hold | linspace | plot | stem

Related Examples
• “Create Figure with Multiple Graphs Using Subplots”

 Create Figure with Multiple Graphs Using Subplots

2-37

Create Figure with Multiple Graphs Using Subplots

This example shows how to create a figure containing multiple graphs using the
subplot function. The syntax, subplot(m,n,p), divides the figure into an m-by-n grid
with an axes in the pth grid location. The grids are numbered along each row.

Create Subplots and Add Subplot Titles

Use subplot to create a figure containing a 2-by-2 grid of graphs. Plot a sine wave in the
first subplot.

x = linspace(-5,5); % define x

y1 = sin(x); % define y1

figure % create new figure

subplot(2,2,1) % first subplot

plot(x,y1)

title('First subplot')

2 Basic Plotting Commands

2-38

Plot another sine wave in the second subplot.

y2 = sin(2*x); % define y2

subplot(2,2,2) % second subplot

plot(x,y2)

title('Second subplot')

 Create Figure with Multiple Graphs Using Subplots

2-39

Plot two more sine waves in the third and fourth subplots.

y3 = sin(4*x); % define y3

y4 = sin(6*x); % define y4

subplot(2,2,3) % third subplot

plot(x,y3)

title('Third subplot')

subplot(2,2,4) % fourth subplot

plot(x,y4)

title('Fourth subplot')

2 Basic Plotting Commands

2-40

Add Subplot Axis Labels

Add subplot labels using the xlabel and ylabel functions. By default, xlabel and
ylabel label the current axes. The current axes is typically the last axes created or
clicked with the mouse. Reissuing the command, subplot(m,n,p), makes the pth
subplot the current axes.

Make the third subplot the current axes. Then, label its x-axis and y-axis.

subplot(2,2,3)

xlabel('x-axis')

ylabel('y-axis')

 Create Figure with Multiple Graphs Using Subplots

2-41

The figure contains four axes with a sine wave plotted in each axes.

See Also
linspace | plot | subplot | title | xlabel | ylabel

Related Examples
• “Add Plot to Existing Graph”

2 Basic Plotting Commands

2-42

Create Graph with Two y-Axes

This example shows how to create a graph with two y-axes, label the axes, and display
the grid lines.

Create and Plot Data

Create the data.

A = 1000;

a = 0.005;

b = 0.005;

t = 0:900;

z1 = A*exp(-a*t);

z2 = sin(b*t);

Use plotyy to create a graph with two y-axes. Plot z1 versus t using semilogarithmic
scaling. Plot z2 versus t using linear scaling. Return the two axes in array ax, and
return the two lines as p1 and p2.

[ax,p1,p2] = plotyy(t,z1,t,z2,'semilogy','plot');

 Create Graph with Two y-Axes

2-43

The left y-axis corresponds to the first set of data plotted, which is the semilogarithmic
plot for z1. The first axes, ax(1), and the line, p1, correspond to the first set of data.

The right y-axis corresponds to the second set of data plotted, which is the line plot for
z2. The second axes, ax(2), and the line, p2, correspond to the second set of data.

Label the Axes

Label the left y-axis by passing the first axes to the ylabel function. Then, label the
right y-axis by passing the second axes to the ylabel function. Label the x-axis using
either axes.

ylabel(ax(1),'Semilog Plot') % label left y-axis

ylabel(ax(2),'Linear Plot') % label right y-axis

2 Basic Plotting Commands

2-44

xlabel(ax(2),'Time') % label x-axis

Modify Line Appearance

Change the appearance of the lines.

p1.LineStyle = '--';

p1.LineWidth = 2;

p2.LineWidth = 2;

 Create Graph with Two y-Axes

2-45

Display Grid Lines

Display the log grid associated with the left y-axis by passing the first axes to the grid
function.

grid(ax(1),'on')

2 Basic Plotting Commands

2-46

To display the linear grid associated with the right y-axis instead, use
grid(ax(2),'on').

See Also
grid | plotyy | ylabel

Related Examples
• “Graph with Multiple x-Axes and y-Axes”

 Display Markers at Specific Data Points on Line Graph

2-47

Display Markers at Specific Data Points on Line Graph

This example shows how to make a line graph and display markers at particular data
points.

Define x and y as 100-element vectors.

x = linspace(0,2*pi,100);

y = sin(x);

Plot x versus y. Display markers every data points by superimposing a second graph
of just markers over the line graph.

xmarkers = 0:pi/2:2*pi; % place markers at these x-values

ymarkers = sin(xmarkers);

figure

plot(x,y,'b',xmarkers,ymarkers,'b*')

2 Basic Plotting Commands

2-48

See Also
hold | linspace | plot

 Plot Imaginary and Complex Data

2-49

Plot Imaginary and Complex Data

Plot One Complex Input

This example shows how to plot the imaginary part versus the real part of a complex
vector, z. With complex inputs, plot(z) is equivalent to plot(real(z),imag(z)),
where real(z) is the real part of z and imag(z) is the imaginary part of z.

Define z as a vector of eigenvalues of a random matrix.

z = eig(randn(20));

Plot the imaginary part of z versus the real part of z. Display a circle at each data point.

figure

plot(z,'o')

2 Basic Plotting Commands

2-50

Plot Multiple Complex Inputs

This example shows how to plot the imaginary part versus the real part of two
complex vectors, z1 and z2. If you pass multiple complex arguments to plot, such as
plot(z1,z2), then MATLAB® ignores the imaginary parts of the inputs and plots the
real parts. To plot the real part versus the imaginary part for multiple complex inputs,
you must explicitly pass the real parts and the imaginary parts to plot.

Define the complex data.

x = -2:0.25:2;

z1 = x.^exp(-x.^2);

z2 = 2*x.^exp(-x.^2);

 Plot Imaginary and Complex Data

2-51

Find the real part and imaginary part of each vector using the real and imag functions.
Then, plot the data.

real_z1 = real(z1);

imag_z1 = imag(z1);

real_z2 = real(z2);

imag_z2 = imag(z2);

plot(real_z1,imag_z1,'g*',real_z2,imag_z2,'bo')

See Also
imag | plot | real

2-52

3

Data Exploration Tools

• “Ways to Explore Graphical Data” on page 3-2
• “Display Data Values Interactively” on page 3-4
• “Zooming in Graphs” on page 3-15
• “Panning — Shifting Your View of the Graph” on page 3-17
• “Rotate in 3-D” on page 3-18

3 Data Exploration Tools

3-2

Ways to Explore Graphical Data

In this section...

“Introduction” on page 3-2
“Types of Tools” on page 3-2

Introduction

After determining what type of graph best represents your data, you can further enhance
the visual display of information using the tools discussed in this section. These tools
enable you to explore data interactively.

Once you have achieved the desired results, you can then generate the MATLAB code
necessary to reproduce the graph you created interactively. See “Generating a MATLAB
File to Recreate a Graph” on page 7-79 for more information.

Types of Tools

See the following sections for information on specific tools.

• “Display Data Values Interactively” on page 3-4
• “Zooming in Graphs” on page 3-15
• “Panning — Shifting Your View of the Graph” on page 3-17
• “Rotate in 3-D” on page 3-18
• “View Control with the Camera Toolbar”

You can also explore graphs visually with data brushing and linking:

• Data brushing lets you “paint” observations on a graph to select them for special
treatment, such as

• Extracting them into new variables
• Replacing them with constant or NaN values
• Deleting them

• Data linking connects graphs with the workspace variables they display, updating
graphs when variables change

 Ways to Explore Graphical Data

3-3

Brushing and linking work together across plots. When multiple graphs or subplots
display the same variables, linking the graphs and brushing any of them causes the
same data to also highlight on other linked graphs. The highlighting also appears on the
selected rows of data when the variables are opened in the Variable Editor. For details,
see “Marking Up Graphs with Data Brushing” and “Making Graphs Responsive with
Data Linking” in the Data Analysis documentation.

You can perform numerical data analysis directly on graphs with basic curve fitting.

• “Linear Regression”
• “Interactive Fitting”

3 Data Exploration Tools

3-4

Display Data Values Interactively

In this section...

“What Is a Data Cursor?” on page 3-4
“Enabling Data Cursor Mode” on page 3-4
“Display Style — Datatip or Cursor Window” on page 3-12
“Selection Style — Select Data Points or Interpolate Points on Graph” on page 3-13
“Exporting Data Value to Workspace Variable” on page 3-13

What Is a Data Cursor?

Data cursors enable you to read data directly from a graph by displaying the values of
points you select on plotted lines, surfaces, images, and so on. You can place multiple
datatips in a plot and move them interactively. If you save the figure, the datatips in it
are saved, along with any other annotations present.

When data cursor mode is enabled, you can

• Click on any graphics object defined by data values and display the x, y, and z (if 3-D)
values of the nearest data point.

• Interpolate the values of points between data points.
• Display multiple data tips on graphs.
• Display the data values in a cursor window that you can locate anywhere in the figure

window or as a data tip (small text box) located next to the data point.
• Export data values as workspace variables.
• Print or export the graph with data tip or cursor window displayed for annotation

purposes.
• Edit the data tip display function to customize what information is displayed and how

it is presented
• Select a different data tip display function

Enabling Data Cursor Mode

Select the data cursor icon in the figure toolbar or select the Data Cursor item in
the Tools menu.

 Display Data Values Interactively

3-5

Once you have enabled data cursor mode, clicking the mouse on a line or other graph
object displays data values of the point clicked. Clicking elsewhere does not create or
update data tips. To place additional data tips, as the picture below shows, see “Creating
Multiple Data Tips” on page 3-10, below. In the picture, the black squares are located
at points selected by the Data Cursor tool, and the data tips next to them display the x
and y values of those points.

The illustrations below use traffic count data stored in count.dat:

load count.dat

plot(count)

3 Data Exploration Tools

3-6

Moving the Marker

You can move the marker using the arrow keys and the mouse. The up and right arrows
move the marker to data points having greater index values in the data arrays. The down
and left arrow keys move the marker to data points having lesser index values. When
you set Selection Style to Mouse Position using the tool's context menu, you can drag
markers and position them anywhere along a line. However, you cannot drag markers
between different line or other series on a plot. The cursor changes to crossed arrows
when it comes close enough to a marker for you to drag the datatip, as shown below:

 Display Data Values Interactively

3-7

Positioning the Datatip Text Box

You can position the data tip text box in any one of four positions with respect to the data
point: upper right (the default), upper left, lower left, and lower right.

To position the datatip, press, but do not release the mouse button while over the datatip
text box and drag it to one of the four positions, as shown below:

You can reposition a datatip, but not its text box, using the arrow keys as well.

Dragging the Datatip to Different Locations

You can drag the datatip to different locations on the graph object by clicking down
on the datatip and dragging the mouse. You can also use the arrow keys to move the
datatip.

3 Data Exploration Tools

3-8

Note: Surface plots and 3-D bar graphs can contain NaN values. If you drag a datatip
to a location coded as NaN, the datatip will disappear (because its coordinates become
(NaN,NaN,NaN)). You can continue to drag it invisibly, however, and it will reappear
when it is over a non-NaN location. However, if you create a new datatip while the
previous current one is invisible, the previous one cannot be retrieved.

Datatips on Image Objects

Datatips on images display the x- and y-coordinates as well as the RGB values and a
color index (for indexed images), as show below:

 Display Data Values Interactively

3-9

Datatips on 3-D Objects

You can use datatips to read data points on 3-D graphs as well. In 3-D views, data tips
display the x-, y- and z-coordinates.

3 Data Exploration Tools

3-10

Creating Multiple Data Tips

Normally, there is only one datatip displayed at one time. However, you can display
multiple datatips simultaneously on a graph. This is a simple way to annotate a number
of points on a graph.

Use the following procedure to create multiple datatips.

1 Enable data cursor mode from the figure toolbar. The cursor changes to a cross.
2 Click on the graph to insert a datatip.
3 Right-click to display the context menu. Select Create New Datatip.
4 Click on the graph to place the second datatip.

 Display Data Values Interactively

3-11

Deleting Datatips

You can remove the most recently added datatip or all datatips. When in data cursor
mode, right-click to display the context menu.

• Select Delete Current Datatip or press the Delete key to remove the last datatip
that you added.

• Select Delete All Datatips to remove all datatips.

Customizing Data Cursor Text

You can customize the text displayed by the data cursor using the datacursormode
function. Use the last two items in the Data Cursor context menu to for this purpose:

• Edit Text Update Function — Opens an editor window to let you modify the
function currently being used to place text in datatips

• Select Text Update Function — Opens an input file dialog for you to navigate to
and select a MATLAB file to use to format text in datatips you subsequently create

When you select Edit Text Update Function for the first time, an editor window opens
with the default text update callback, which consists of the following code:

function output_txt = myfunction(obj,event_obj)

% Display the position of the data cursor

% obj Currently not used (empty)

% event_obj Handle to event object

% output_txt Data cursor text string (string or cell array of strings).

pos = get(event_obj,'Position');

output_txt = {['X: ',num2str(pos(1),4)],...

 ['Y: ',num2str(pos(2),4)]};

% If there is a Z-coordinate in the position, display it as well

if length(pos) > 2

 output_txt{end+1} = ['Z: ',num2str(pos(3),4)];

end

You can modify this code to display properties of the graphics object other than position.
If you want to do so, you should first save this code to a MATLAB file before changing
it, and select that file if you want to revert to default datatip displays during the same
session.

If for example you save it as def_datatip_cb.m, and then modify the code and save
it to another file, you can then choose between the default behavior and customized
behavior by choosing Select Text Update Function from the context menu and
selecting one of the callbacks you saved.

3 Data Exploration Tools

3-12

See the Examples section of the datacursormode reference page for more information
on using data cursor objects and update functions. Also see the example of customizing
datatip text in “Using Data Tips to Explore Graphs” in the MATLAB Data Analysis
documentation.

Display Style — Datatip or Cursor Window

By default, the data cursor displays values as a datatip (small text box located next to the
data point). You can also display a single data value in a cursor window that is anchored
within the figure window. You can place multiple datatips on a graph, which makes this
display style useful for annotations.

The cursor window style is particularly useful when you want to drag the data cursor
to explore image and surface data; numeric information in the window updates without
obscuring the any of the figure's symbology.

To use the cursor window, change the display style as follows:

1 While in data cursor mode, right-click to display the context menu.
2 Mouse over the Display Style item.
3 Select Window Inside Figure.

Note: If you change the data cursor Display Style from Datatip to Window Inside
Figure with the context menu, only the most recent data tip is displayed; all other

 Display Data Values Interactively

3-13

existing data tips are removed because the window can display only one datatip at a
time.

Selection Style — Select Data Points or Interpolate Points on Graph

By default, the data cursor displays the values of the data point nearest to the point
you click with the mouse, and the data marker snaps to this point. The data cursor can
also determine the values of points that lie in between the data defining the graph, by
linearly interpolating between the two data points closest to the location you click the
mouse.

Enabling Interpolation Mode

If you want to be able to select any point along a graph and display its value, use the
following procedure:

1 While in data cursor mode, right-click to display the context menu.
2 Mouse over the Selection Style item.
3 Select Mouse Position.

MATLAB does not honor interpolation mode when you use the arrow keys to move a
datatip to a new location.

Exporting Data Value to Workspace Variable

You can export the values displayed with the data cursor to MATLAB workspace
variables. To do this, display the right-click context menu while in data cursor mode and
select Export Cursor Data to Workspace.

The Export Cursor Data to Workspace dialog then displays so that you can name the
workspace variable.

Clicking OK creates a MATLAB structure with the specified name in your base
workspace, containing the following fields:

• Target — Handle of the graphics object containing the data point
• Position — x- and y- (and z-) coordinates of the data cursor location in axes data

units

Line and lineseries objects have an additional field:

3 Data Exploration Tools

3-14

• DataIndex — A scalar index into the data arrays that correspond to the nearest data
point. The value is the same for each array.

For example, if you saved the workspace variable as cursor_info, then you would
access the position data by referencing the Position field.

cursor_info.Position

ans =

 0.4189 0.1746 0

 Zooming in Graphs

3-15

Zooming in Graphs
In this section...

“Zooming in 2-D and 3-D” on page 3-15
“Zooming in 2-D Views” on page 3-15

Zooming in 2-D and 3-D

Zooming changes the magnification of a graph without changing the size of the figure or
axes. Zooming is useful to see greater detail in a small area. As explained below, zooming
behaves differently depending on whether it is applied to a 2-D or 3-D view.

Enable zooming by clicking one of the zoom icons . Select + to zoom in and – to
zoom out.

Tip When in zoom in mode, you can use Shift+click to zoom out (i.e., press and hold down
the Shift key while clicking the mouse). You can also right-click and zoom out or restore
the plot to its original view using the context menu.

Zooming in 2-D Views

In 2-D views, click the area of the axes where you want to zoom in, or drag the cursor
to draw a box around the area you want to zoom in on. MATLAB redraws the axes,
changing the limits to display the specified area.

When you right-click in Zoom mode, the context menu enables you to:

• Zoom out
• Reset to the view of the graph when it was plotted (undo one or more changes of view)
• Constrain zooming to expand only the x-axis (horizontal zoom)
• Constrain zooming to expand only the y-axis (vertical zoom)

Undoing Zoom Actions

If you want to reset the graph to its original view, right-click to display the context menu
and select Reset to Original View. You can also use the Undo item on the Edit menu
to undo each operation you performed on your graph.

3 Data Exploration Tools

3-16

Zoom Constrained to Horizontal or Vertical

In 2-D views, you can constrain zoom to operate in either the horizontal or vertical
direction. To do this, right-click to display the context menu while in zoom mode and
select the desired constraint from the Zoom Options submenu, as illustrated in the
previous figure. Horizontal zooming is useful for exploring time series graphs that have
dense intervals. Vertical zooming can help you see minor variations in places where the
YData range is small compared to the y-axis limits.

Zooming in 3-D Views

In 3-D views, moving the cursor up or to the right zooms in, while moving the cursor
down or to the left zooms out. Both toolbar icons enable the same behavior. 3-D
zooming does not change the axes limits, as in 2-D zooming. Instead it changes the view
(specifically, the axes CameraViewAngle property) as if you were looking through a
camera with a zoom lens.

 Panning — Shifting Your View of the Graph

3-17

Panning — Shifting Your View of the Graph

You can move your view of a graph up and down as well as left and right with the pan
tool. Panning is useful when you have zoomed in on a graph and want to translate the
plot to view different portions.

Click the hand icon on the figure toolbar to enable panning . In pan mode you can
move up, down, left, or right. You can constrain movement to be vertical or horizontal
only by right-clicking and selecting one of the Pan Options from the pan tool's context
menu.

3-D panning moves the axes with the object, because the 3-D view is not aligned to the x-,
y-, or z-axis. The axes limits do not change as in 2-D panning.

3 Data Exploration Tools

3-18

Rotate in 3-D

In this section...

“Enabling 3-D Rotation” on page 3-18
“Selecting Predefined Views” on page 3-18
“Rotation Style for Complex Graphs” on page 3-19
“Undo/Redo — Eliminating Mistakes” on page 3-21

Enabling 3-D Rotation

You can easily rotate graphs to any orientation with the mouse. Rotation involves the
reorientation of the axes and all the graphics objects it contains. Therefore none of the
data defining the graphics objects is affected by rotation; instead the orientation of the x-,
y-, and z-axes changes with respect to the viewer.

There are three ways to enable Rotate 3D mode:

• Select Rotate 3D from the Tools menu.
•

Click the Rotate 3D icon in the figure toolbar .
• Execute the rotate3d command.

Once the mode is enabled, you press and hold the mouse button while moving the cursor
to rotate the graph.

Selecting Predefined Views

When Rotate 3D mode is enabled, you can control various rotation options from the right-
click context menu.

You can rotate to predefined views on the right-click context menu:

• Reset to Original View — Reset to the default view (azimuth -37.5°, elevation 30°).
• Go to X-Y View — View graph along the z-axis (azimuth 0°, elevation 90°).
• Go to X-Z View — View graph along the y-axis (azimuth 0°, elevation 0°).
• Go to Y-Z View — View graph along the x-axis (azimuth 90°, elevation 0°).

 Rotate in 3-D

3-19

Rotation Style for Complex Graphs

You can select from two rotation styles on the right-click context menu's Rotation
Options submenu:

• Plot Box Rotate — Display only the axes bounding box for faster rotation of complex
objects. Use this option if the default Continuous Rotate style is unacceptably slow.

• Continuous Rotate — Display all graphics during rotation.

Axes Behavior During Rotation

You can select two types of behavior with respect to the aspect ratio of axes during
rotation:

• Stretch-to-Fill Axes – Default axes behavior is optimized for 2-D plots. Graphs fit
the rectangular shape of the figure.

• Fixed Aspect Ratio Axes – Maintains a fixed shape of objects in the axes as they
are rotated. Use this setting when rotating 3-D plots.

The following pictures illustrate a sphere as it is rotated with Stretch-to-Fill Axes
selected. Notice that the sphere is not round due to the selected aspect ratio.

3 Data Exploration Tools

3-20

The next picture shows how the Fixed Aspect Ratio Axes option results in a sphere
that maintains its proper shape as it is rotated.

 Rotate in 3-D

3-21

Undo/Redo — Eliminating Mistakes

The figure Edit menu contains two items that enable you to undo any zoom, pan, or
rotate operation.

Undo — Remove the effect of the last operation.

Redo — Perform again the last operation that you removed by selecting Undo.

3-22

4

Annotating Graphs

• “Change Mapping of Data Values into the Colormap” on page 4-2
• “Change Colorbar Width” on page 4-5
• “Include Subset of Objects in Graph Legend” on page 4-8
• “Display One Legend Entry for Group of Objects” on page 4-11
• “Specify Legend Descriptions During Line Creation” on page 4-14
• “Add Text to Specific Points on Graph” on page 4-17
• “Include Variable Values in Graph Text” on page 4-23
• “Text with Mathematical Expression Using LaTeX” on page 4-26
• “Text with Greek Letters and Special Characters” on page 4-31
• “Add Annotations to Graph Interactively” on page 4-35
• “Add Text to Graph Interactively” on page 4-38
• “Add Colorbar to Graph Interactively” on page 4-44
• “Align Objects in Graph Using Alignment Tools” on page 4-48

4 Annotating Graphs

4-2

Change Mapping of Data Values into the Colormap

This example shows how to control the mapping of data values into the colormap so that
positive data values map to different colors and negative data values map to black.

Create a surface plot of the peaks function and add a colorbar.

figure

surf(peaks(30))

colorbar

Use caxis to return cmin and cmax, the current data values that map to the minimum
and maximum values of the colormap, respectively. Then, use caxis again to change

 Change Mapping of Data Values into the Colormap

4-3

the scaling of data values into the colormap. Set the minimum color limit to zero to map
negative data values to the first color in the colormap. Keep the same maximum color
limit, cmax.

[cmin,cmax] = caxis;

caxis([0,cmax])

Set the first color in the colormap to black by setting the first row of the current
colormap, map, to [0,0,0]. Apply the updated colormap to the figure.

map = colormap; % current colormap

map(1,:) = [0,0,0];

colormap(map)

4 Annotating Graphs

4-4

All data values less than or equal to zero map to black.

See Also
caxis | colorbar | colormap | surf

 Change Colorbar Width

4-5

Change Colorbar Width

This example shows how to change the width of the colorbar by setting its
Position property. The Position property sets the location and size of the
colorbar. Specify the Position property value as a four-element vector of the form
[left,bottom,width,height], where the first two elements set the colorbar position
relative to the figure, and the last two elements set its size.

Create a checkerboard plot of the peaks function and add a colorbar.

figure

pcolor(peaks)

c = colorbar;

4 Annotating Graphs

4-6

Store the current positions of the axes and the colorbar.

ax = gca;

axpos = ax.Position;

cpos = c.Position;

Change the colorbar width to half of its original width by adjusting the third element in
cpos. Set the colorbar Position property to the updated position vector. Then, reset the
axes to its original position so that it does not overlap the colorbar.

cpos(3) = 0.5*cpos(3);

c.Position = cpos;

ax.Position = axpos;

 Change Colorbar Width

4-7

The graph displays a colorbar that has a narrow width.

See Also
colorbar | pcolor

4 Annotating Graphs

4-8

Include Subset of Objects in Graph Legend

This example shows how to add a legend to a graph that includes only a subset of objects
in the graph.

Plot a vector of random data. Then, calculate the mean of the data. Draw a black, dashed,
horizontal line at the value of the calculated mean.

dat = rand(50,1);

plot(dat)

m = mean(dat);

ax = gca;

xlimits = ax.XLim;

h = line([xlimits(1),xlimits(2)],[m,m],'Color','k','LineStyle','--');

 Include Subset of Objects in Graph Legend

4-9

Add a legend for the horizontal line by passing the line object to the legend function.

legend(h,'mean of data')

4 Annotating Graphs

4-10

The legend contains a description for the horizontal line, but not the line plot of random
data.

See Also
legend | line | mean | plot

 Display One Legend Entry for Group of Objects

4-11

Display One Legend Entry for Group of Objects

This example shows how to group sets of lines together and add a legend to the graph
that contains one entry for each group.

Create two groups, g1 and g2. Plot four sine waves and four cosine waves. Group all the
sine plot lines together by setting their Parent property to g1. Group all the cosine plot
lines together by setting their Parent property to g2.

g1 = hggroup;

g2 = hggroup;

t = linspace(0,2*pi,100);

plot(t,sin(t),'b','Parent',g1)

hold on

plot(t,sin(t+1/7),'b','Parent',g1)

plot(t,sin(t+2/7),'b','Parent',g1)

plot(t,sin(t+3/7),'b','Parent',g1)

plot(t,cos(t),'g','Parent',g2)

plot(t,cos(t+1/7),'g','Parent',g2)

plot(t,cos(t+2/7),'g','Parent',g2)

plot(t,cos(t+3/7),'g','Parent',g2)

hold off % reset hold state to off

4 Annotating Graphs

4-12

Add a legend with one description for each group of lines.

legend([g1,g2],'sine','cosine')

 Display One Legend Entry for Group of Objects

4-13

The legend contains two entries, one for each group of lines.

See Also
hggroup | hold | legend | plot

4 Annotating Graphs

4-14

Specify Legend Descriptions During Line Creation

This example shows how to plot data and specify its associated legend description during
the plotting command.

Plot three sine curves. For each line, set the DisplayName property to a descriptive
string.

x = linspace(0,2*pi,100);

y1 = sin(x);

p1 = plot(x,y1,'DisplayName','sin(x)');

hold on

y2 = sin(x) + pi/2;

p2 = plot(x,y2,'DisplayName','sin(x) + \pi/2');

y3 = sin(x) + pi;

p3 = plot(x,y3,'DisplayName','sin(x) + \pi');

hold off

 Specify Legend Descriptions During Line Creation

4-15

The graph does not display the legend until you call the legend function. Display the
legend for the three lines.

legend([p1 p2 p3])

4 Annotating Graphs

4-16

If you do not pass strings to the legend function, then legend uses the DisplayName
properties as descriptions. If the DisplayName property does not have a value, then
legend uses a default string of the form 'data1', 'data2', and so on.

See Also
hold | legend | plot

 Add Text to Specific Points on Graph

4-17

Add Text to Specific Points on Graph

In this section...

“Add Text to Three Data Points on Graph” on page 4-17
“Determine Minimum and Maximum Points and Add Text” on page 4-20

Add Text to Three Data Points on Graph

This example shows how to add text descriptions with arrows that point to three data
points on a graph.

Use the linspace function to create t as a vector of 50 values between 0 and . Create
y as sine values. Plot the data.

t = linspace(0,2*pi,50);

y = sin(t);

plot(t,y)

4 Annotating Graphs

4-18

Use the text function to add a text description to the graph at the point . The
first two input arguments to this function define the text position. The third argument
defines the text string. Display an arrow pointing to the left by including the TeX
markup \leftarrow in the string. Use the TeX markup \pi for the Greek letter .

x1 = pi;

y1 = sin(pi);

str1 = '\leftarrow sin(\pi) = 0';

text(x1,y1,str1)

 Add Text to Specific Points on Graph

4-19

Add text descriptions to two more data points on the graph. By default, the text
aligns so that the specified data point is to the left of the string. Specify the
HorizontalAlignment property for the last description as 'right' so that the data
point is to the right of the string. Use the TeX markup \rightarrow to diplay an arrow
pointing to the right.

x2 = 3*pi/4;

y2 = sin(3*pi/4);

str2 = '\leftarrow sin(3\pi/4) = 0.71';

text(x2,y2,str2)

x3 = 5*pi/4;

y3 = sin(5*pi/4);

str3 = 'sin(5\pi/4) = -0.71 \rightarrow';

4 Annotating Graphs

4-20

text(x3,y3,str3,'HorizontalAlignment','right')

Determine Minimum and Maximum Points and Add Text

This example shows how to determine the minimum and maximum data points on a
graph and add text descriptions next to these values.

Create a plot.

x = linspace(-3,3);

y = (x/5-x.^3).*exp(-2*x.^2);

plot(x,y)

 Add Text to Specific Points on Graph

4-21

Find the indices of the minimum and maximum values in y. Use the indices to determine
the (x,y) values at the minimum and maximum points.

indexmin = find(min(y) == y);

xmin = x(indexmin);

ymin = y(indexmin);

indexmax = find(max(y) == y);

xmax = x(indexmax);

ymax = y(indexmax);

Add text to the graph at these points. Use num2str to convert the y values to strings.
Specify the text alignment in relation to the point using the HorizontalAlignment
property.

4 Annotating Graphs

4-22

strmin = ['Minimum = ',num2str(ymin)];

text(xmin,ymin,strmin,'HorizontalAlignment','left');

strmax = ['Maximum = ',num2str(ymax)];

text(xmax,ymax,strmax,'HorizontalAlignment','right');

See Also
linspace | plot | text | title | xlabel | ylabel

Related Examples
• “Include Variable Values in Graph Text” on page 4-23
• “Text with Greek Letters and Special Characters” on page 4-31

 Include Variable Values in Graph Text

4-23

Include Variable Values in Graph Text

These examples show how to convert variable values to strings to include in text on a
graph.

In this section...

“Include Variable Value in Axis Label” on page 4-23
“Include Loop Variable Value in Graph Title” on page 4-24

Include Variable Value in Axis Label

Include a variable value in the x-axis label. Use the num2str function to convert the
number to a string.

x = linspace(0,10);

amp = 2;

y = amp*cos(x);

plot(x,y)

xlabel(['Sine wave: ' num2str(amp) ' units in amplitude.'])

4 Annotating Graphs

4-24

Include Loop Variable Value in Graph Title

Use a loop to create a figure containing four subplots. In each subplot, plot a sine wave
with different frequencies based on the loop variable k. Add a title to each subplot that
includes the value of k.

x = linspace(0,10,100);

for k = 1:4

 subplot(2,2,k);

 yk = sin(k*x);

 plot(x,yk)

 title(['y = sin(' num2str(k) 'x)'])

end

 Include Variable Values in Graph Text

4-25

See Also
figure | linspace | num2str | plot | subplot | title

Related Examples
• “Add Text to Specific Points on Graph” on page 4-17
• “Text with Greek Letters and Special Characters” on page 4-31

4 Annotating Graphs

4-26

Text with Mathematical Expression Using LaTeX

These examples show how add text to a graph that includes mathematical expressions
using LaTeX.

By default, text objects in MATLAB support a subset of TeX markup. For a list of
supported TeX markup, see the text Interpreter property description. To use
additional special characters, such as integral and summation symbols, use LaTeX
markup. To use LaTeX markup, you must set the Interpreter property of the text
object to 'latex'. For more information on LaTeX, see The LaTeX Project website at
http://www.latex-project.org/.

In this section...

“Add Text with Integral Expression to Graph” on page 4-26
“Add Text with Summation Symbol to Graph” on page 4-28

Add Text with Integral Expression to Graph

Plot . Draw a vertical line at from the x-axis to the plotted line.

x = linspace(0,3);

y = x.^2.*sin(x);

plot(x,y)

line([2,2],[0,2^2*sin(2)])

http://www.latex-project.org

 Text with Mathematical Expression Using LaTeX

4-27

Add text to the graph that contains an integral expression using LaTeX markup and add
an arrow annotation to the graph. To use LaTeX markup, set the Interpreter property
for the text object to 'latex'.

str = '$$ \int_{0}^{2} x^2\sin(x) dx $$';

text(0.25,2.5,str,'Interpreter','latex')

annotation('arrow','X',[0.32,0.5],'Y',[0.6,0.4])

4 Annotating Graphs

4-28

Add Text with Summation Symbol to Graph

Plot the sine function and plot two polynomials.

x = linspace(-3,3);

y = sin(x);

plot(x,y)

y0 = x;

hold on

plot(x,y0)

y1 = x - x.^3/6;

plot(x,y1)

 Text with Mathematical Expression Using LaTeX

4-29

hold off

Add a text description to the graph that includes a summation symbol using LaTeX
markup. To use LaTeX, set the Interpreter property for the text object to 'latex'.

str = '$$\sin(x) = \sum_{n=0}^{\infty}{\frac{(-1)^n x^{2n+1}}{(2n+1)!}}$$';

text(-2,1,str,'Interpreter','latex')

4 Annotating Graphs

4-30

See Also
annotation | Text Properties | text | title | xlabel | ylabel

Related Examples
• “Add Text to Specific Points on Graph” on page 4-17
• “Text with Greek Letters and Special Characters” on page 4-31

 Text with Greek Letters and Special Characters

4-31

Text with Greek Letters and Special Characters

These examples show how to add text to a graph that includes Greek letters and other
special characters. To define these characters, use TeX markup. For example, use ^ to
display superscripts and _ to display subscripts. For a list of supported TeX markup, see
the text Interpreter property description.

In this section...

“Include Greek Letters in Graph Text” on page 4-31
“Include Superscripts and Annotations in Graph Text” on page 4-32

Include Greek Letters in Graph Text

Create a simple line plot and add a title to the graph. Include the Greek letter in the
title by using the TeX markup \pi.

x = linspace(0,2*pi);

y = sin(x);

plot(x,y)

title('x ranges from 0 to 2\pi')

4 Annotating Graphs

4-32

Include Superscripts and Annotations in Graph Text

Create a line plot and add a title and axis labels to the graph. Display a superscript
in the title using the ^ character. The ^ character modifies the character immediately
following it. Include multiple characters in the superscript by enclosing them in curly
braces {}. Include the Greek letters and in the text using the TeX markups \alpha
and \mu, respectively.

t = 1:900;

y = 0.25*exp(-0.005*t);

plot(t,y)

title('Ae^{\alphat} for A = 0.25 and \alpha = -0.0005')

xlabel('Time \musec')

 Text with Greek Letters and Special Characters

4-33

ylabel('Amplitude')

Add text at the data point where t = 300. Use the TeX markup \bullet to add a
marker to the specified point and use \leftarrow to include an arrow pointing to the
left. By default, the text aligns so that the specified data point is to the left of the string.

str = '\bullet \leftarrow 0.25t e^{-0.005t} at t = 300';

text(t(300),y(300),str)

4 Annotating Graphs

4-34

See Also
plot | text | title | xlabel | ylabel

More About
• “Add Title, Axis Labels, and Legend to Graph”
• “Include Variable Values in Graph Text” on page 4-23
• “Add Text to Specific Points on Graph” on page 4-17

 Add Annotations to Graph Interactively

4-35

Add Annotations to Graph Interactively

These example show how to interactively add annotations to a graph and pin them to the
axes.

In this section...

“Add Annotations” on page 4-35
“Pin Annotations to Points in Graph” on page 4-36

Add Annotations

Create a simple line plot.

x = linspace(1,10);

plot(x,sin(x))

Interactively add a text arrow and an ellipse to the graph using the figure Insert menu.
Position the text arrow by drawing an arrow from tail to head and typing the text at the
text cursor next to the tail. Click outside the text entry box to apply the text. Position the
ellipse using the mouse to draw.

4 Annotating Graphs

4-36

To change the location of an annotation, drag it. To modify the appearance of an
annotation, right-click it and use the context menu. To view additional properties, open
the Property Editor select Show Property Editor from the context menu.

Pin Annotations to Points in Graph

Pin the text arrow and ellipse to the axes so that they stay associated with the same
coordinates in the axes, even when you pan the axes or resize the figure. Right-click it
and select Pin to Axes. Pin both ends of the text arrow.

 Add Annotations to Graph Interactively

4-37

Click the pan icon in the figure toolbar and pan the axes by dragging it. The text
arrow and ellipse stay associated with the same points in the axes. To unpin an object,
right-click it and select Unpin.

See Also
annotation

Related Examples
• “Add Text to Graph Interactively” on page 4-38

4 Annotating Graphs

4-38

Add Text to Graph Interactively

In this section...

“Add Title and Axis Labels” on page 4-38
“Add Legend” on page 4-40
“Add Annotations to Graph” on page 4-42

This example shows how to interactively add a title, legend, axis labels, and other text to
a graph using the figure menus and plot tools.

Add Title and Axis Labels

Create a simple line plot.

x = linspace(1,10);

plot(x,sin(x))

Use the figure Insert menu to add a title and axis labels to the graph. After typing the
text, click anywhere outside the text entry box to apply the text.

 Add Text to Graph Interactively

4-39

To modify the title and axis labels, first enable plot edit mode by clicking the Edit Plot

button on the figure toolbar.

• To change the text, double-click it and type new text.
• To move the text, drag it to a new position.
• To set text properties, such as the color and font style, right-click the text and use the

context menu.
• To set additional properties, use the Property Editor. Select Show Property Editor

from the context menu.

4 Annotating Graphs

4-40

Add Legend

Add a legend to the graph. In the figure, select Insert > Legend.

By default, the legend labels each plotted object with the strings data1, data2, and so
on. Change the legend text by double-clicking the text and retyping new text. Display
special characters and symbols using TeX markup. For example, use the _ character
to display a subscript. For a list of supported TeX markup, see the text Interpreter
property.

 Add Text to Graph Interactively

4-41

Note: To display a legend with more than 50 entries, you must use the legend function.

To change the legend location, right-click the legend and set the Location option from
the context menu. For additional location options, or to modify other legend properties,
use the Property Editor. Select View > Property Editor to open the Property Editor.
Then, click the legend to access its properties.

4 Annotating Graphs

4-42

Add Annotations to Graph

Add a text box and a text arrow to the graph using the TextBox and Textarrow options
from the Insert menu. To add a text box, draw a rectangle and then type the text at the
text cursor. To add a text arrow, draw an arrow from tail to head and type the text at the
text cursor next to the tail.

 Add Text to Graph Interactively

4-43

See Also
legend | title | xlabel | ylabel | zlabel

Related Examples
• “Add Annotations to Graph Interactively” on page 4-35
• “Add Text to Specific Points on Graph” on page 4-17
• “Add Title, Axis Labels, and Legend to Graph”

4 Annotating Graphs

4-44

Add Colorbar to Graph Interactively

This example shows how to interactively add a colorbar to a graph. Colorbars show the
current colormap and indicate the mapping of data values to colors in the colormap.

In this section...

“Add Colorbar” on page 4-44
“Change Colorbar Location” on page 4-45
“Change Colormap” on page 4-46

Add Colorbar

Create a simple surface plot.

surf(peaks)

Add a colorbar to a graph. On the toolbar, click the Colorbar button .

 Add Colorbar to Graph Interactively

4-45

Change Colorbar Location

Change the location of the colorbar. Right-click the colorbar and select Location
>Outside South.

4 Annotating Graphs

4-46

Change Colormap

Change the colormap using the Property Editor. Right-click the colorbar and select
Show Property Editor. Depending on where you click the figure, different sets of
properties appear. Click the gray background to access the Colormap property. Select the
Jet colormap from the list. The graph updates and displays the Jet colormap.

 Add Colorbar to Graph Interactively

4-47

To shift the mapping of data values into the current colormap, right-click the colorbar
and select Interactive Colormap Shift. Then, click a color in the colorbar and drag. As
you drag, the mapping of data values into the colormap shifts.

To perform additional operations on the colormap, open the colormap editor by selecting
Open Colormap Editor from the colorbar's context menu.

See Also
colorbar | colormap | colormapeditor

4 Annotating Graphs

4-48

Align Objects in Graph Using Alignment Tools

This example shows how to align text boxes in a graph using alignment tools.

Plot a line.

plot(1:10)

Add four text box annotations to the graph. In the figure, select Insert > TextBox.
Approximately align the text boxes in a vertical column.

Use Shift + click to select all four text boxes. Align the text boxes into one column. In the
figure, select Tools > Smart Align and Distribute.

 Align Objects in Graph Using Alignment Tools

4-49

For more control over the alignment, use the Align Distribute Tool. Select all four text
boxes again and select Tools > Align Distribute Tool. Set the vertical distribution
between the text boxes to 10 pixels and set the horizontal alignment to left-aligned, and
then click OK.

4 Annotating Graphs

4-50

The text boxes align according to your alignment settings.

 Align Objects in Graph Using Alignment Tools

4-51

See Also
annotation

More About
• “Add Text to Graph Interactively” on page 4-38
• “Add Annotations to Graph Interactively” on page 4-35

4-52

5

Creating Specialized Plots

• “Types of Bar Graphs” on page 5-2
• “Modify Baseline of Bar Graph” on page 5-9
• “Overlay Bar Graphs” on page 5-13
• “Overlay Line Plot on Bar Graph Using Different Y-Axes” on page 5-16
• “Color 3-D Bars by Height” on page 5-20
• “Compare Data Sets Using Overlayed Area Graphs” on page 5-23
• “Offset Pie Slice with Greatest Contribution” on page 5-28
• “Add Legend to Pie Chart” on page 5-30
• “Label Pie Chart With Text and Percent Values” on page 5-33
• “Data Cursors with Histograms” on page 5-39
• “Combine Stem Plot and Line Plot” on page 5-41
• “Overlay Stairstep Plot and Line Plot” on page 5-46
• “Display Quiver Plot Over Contour Plot” on page 5-49
• “Projectile Path Over Time” on page 5-51
• “Label Contour Plot Levels” on page 5-53
• “Change Fill Colors for Contour Plot” on page 5-55
• “Highlight Specific Contour Levels” on page 5-57
• “Contour Plot in Polar Coordinates” on page 5-60
• “Animation Techniques” on page 5-66
• “Trace Marker Along Line” on page 5-68
• “Move Group of Objects Along Line” on page 5-71
• “Animate Graphics Object” on page 5-75
• “Line Animations” on page 5-79
• “Record Animation for Playback” on page 5-82

5 Creating Specialized Plots

5-2

Types of Bar Graphs

Bar graphs are useful for viewing results over a period of time, comparing results from
different data sets, and showing how individual elements contribute to an aggregate
amount.

By default, bar graphs represents each element in a vector or matrix as one bar, such
that the bar height is proportional to the element value.

2-D Bar Graph

The bar function distributes bars along the x-axis. Elements in the same row of a matrix
are grouped together. For example, if a matrix has five rows and three columns, then bar
displays five groups of three bars along the x-axis. The first cluster of bars represents the
elements in the first row of Y.

Y = [5,2,1

 8,7,3

 9,8,6

 5,5,5

 4,3,2];

figure

bar(Y)

 Types of Bar Graphs

5-3

To stack the elements in a row, specify the stacked option for the bar function.

figure

bar(Y,'stacked')

5 Creating Specialized Plots

5-4

2-D Horizontal Bar Graph

The barh function distributes bars along the y-axis. Elements in the same row of a
matrix are grouped together.

Y = [5,2,1

 8,7,3

 9,8,6

 5,5,5

 4,3,2];

figure

barh(Y)

 Types of Bar Graphs

5-5

3-D Bar Graph

The bar3 function draws each element as a separate 3-D block and distributes the
elements of each column along the y-axis.

Y = [5,2,1

 8,7,3

 9,8,6

 5,5,5

 4,3,2];

figure

bar3(Y)

5 Creating Specialized Plots

5-6

To stack the elements in a row, specify the stacked option for the bar3 function.

figure

bar3(Y,'stacked')

 Types of Bar Graphs

5-7

3-D Horizontal Bar Graph

The bar3h function draws each element as a separate 3-D block and distributes the
elements of each column along the z-axis.

Y = [5,2,1

 8,7,3

 9,8,6

 5,5,5

 4,3,2];

figure

bar3h(Y)

5 Creating Specialized Plots

5-8

See Also
bar | bar3 | bar3h | barh

 Modify Baseline of Bar Graph

5-9

Modify Baseline of Bar Graph

This example shows how to modify properties of the baseline of a bar graph.

The bar and barh functions create a bar series for each column in a matrix. Each bar
series comprises a set of bars that have the same color. All bar series in a graph share the
same baseline.

To change the value of the baseline, set the BaseValue property for any of the bar series.
To change other properties of the baseline, such as the line style or color, you must use
the baseline handle.

For example, create a bar graph of a four-column matrix. Return the four bar series
handles as hBars.

Y = [5, 4, 3, 5;

 3, 6, 3, 1;

 4, 3, 5, 4];

figure

hBars = bar(Y);

5 Creating Specialized Plots

5-10

To change the value of the baseline to 2, set the BaseValue property for one of the bar
objects to 2.

hBars(1).BaseValue = 2;

 Modify Baseline of Bar Graph

5-11

Get the handle of the baseline from the BaseLine property of one of the bar series. Use
the handle to change the baseline to a thick, red dotted line.

hBaseline = hBars(1).BaseLine;

hBaseline.LineStyle = ':';

hBaseline.Color = 'red';

hBaseline.LineWidth = 2;

5 Creating Specialized Plots

5-12

See Also
bar | barh

 Overlay Bar Graphs

5-13

Overlay Bar Graphs

This example shows how to overlay two bar graphs.

Define series1 and series2.

x = [1,3,5,7,9]; % place bars at these points along x-axis

series1 = [10,25,90,35,16];

series2 = [7,38,31,50,41];

Create a bar graph of the data in series1. Set the bar width to 0.5. Set the bar color to
dark blue by setting the FaceColor property to an RGB color value.

figure

width1 = 0.5;

bar(x,series1,width1,'FaceColor',[0.2,0.2,0.5])

5 Creating Specialized Plots

5-14

Use the hold function to retain the first graph. Plot the second bar graph over the
first bar graph using a smaller bar width. Specify a different RGB color value for the
FaceColor and EdgeColor properties of the second bar graph.

hold on

width2 = width1/2;

bar(x,series2,width2,'FaceColor',[0,0.7,0.7],...

 'EdgeColor',[0,0.7,0.7])

hold off

legend('First Series','Second Series') % add legend

 Overlay Bar Graphs

5-15

The figure contains two bar graphs. MATLAB® plots the dark blue bars behind the light
blue bars since the dark blue bars are plotted first. The order of the plotting commands
determines the stacking order of the bars.

See Also
bar | barh | hold

5 Creating Specialized Plots

5-16

Overlay Line Plot on Bar Graph Using Different Y-Axes

This example shows how to combine a line plot and a bar graph using two different y-
axes.

Define the concentration and temperature data collected every 5 days for a 35 day period.

days = 0:5:35;

conc = [515,420,370,250,135,120,60,20];

temp = [29,23,27,25,20,23,23,27];

Use plotyy to display a bar graph of the temperature data and a line graph of the
concentration data. Return the two axes handles as ax, the bar graph handle as hBar,
and the line plot handle as hLine.

figure

[ax,hBar,hLine] = plotyy(days,temp,days,conc,'bar','plot');

 Overlay Line Plot on Bar Graph Using Different Y-Axes

5-17

Add a title and axis labels to the graph. Use the axes handles to label the left and right y-
axis appropriately.

title('Trend Chart for Concentration')

xlabel('Day')

ylabel(ax(1),'Temperature (^{o}C)')

ylabel(ax(2),'Concentration')

5 Creating Specialized Plots

5-18

Change the line width and color. To change properties of the line, use its handle.

hLine.LineWidth = 3;

hLine.Color = [0,0.7,0.7];

 Overlay Line Plot on Bar Graph Using Different Y-Axes

5-19

The graph uses two different y-axes. The left y-axis corresponds to the bar graph. The
right y-axis corresponds to the line plot.

See Also
bar | gca | plot | text

5 Creating Specialized Plots

5-20

Color 3-D Bars by Height
This example shows how to modify a 3-D bar plot by coloring each bar according to its
height.

Generate data for this example using the magic function.

Z = magic(5);

Create a 3-D bar graph of Z. Store the handles to the surface objects used to create the
bar graph in array h. Add a colorbar to the graph.

figure

h = bar3(Z);

colorbar

 Color 3-D Bars by Height

5-21

For each surface object, get the array of z-coordinates from the ZData property. Use the
array to set the CData property, which defines the vertex colors. Interpolate the face
colors by setting the FaceColor properties of the surface objects to interp.

for k = 1:length(h)

 zdata = h(k).ZData;

 h(k).CData = zdata;

 h(k).FaceColor = 'interp';

end

5 Creating Specialized Plots

5-22

The height of each bar determines its color. You can estimate the bar heights by
comparing the bar colors to the colorbar.

See Also
bar3 | colorbar

 Compare Data Sets Using Overlayed Area Graphs

5-23

Compare Data Sets Using Overlayed Area Graphs

This example shows how to compare two data sets by overlaying their area graphs.

Overlay Two Area Graphs

Define the sales and expenses data from the years 2004 to 2008.

years = 2004:2008;

sales = [51.6, 82.4, 90.8, 59.1, 47.0];

expenses = [19.3, 34.2, 61.4, 50.5, 29.4];

Use the area function to display sales and expenses as two separate area graphs in the
same axes. First, create an area graph of sales. Change the color of the area graph by
setting the FaceColor and EdgeColor properties using RGB color values.

figure

area(years,sales,'FaceColor',[0.5,0.9,0.6],...

 'EdgeColor',[0,0.5,0.1])

5 Creating Specialized Plots

5-24

Use the hold command to prevent a new graph from replacing the area graph. Create
a second area graph of expenses and change the color of this graph by specifying the
FaceColor and EdgeColor properties. Set the hold state to off.

hold on

area(years,expenses,'FaceColor',[0.7,0.7,0.7],...

 'EdgeColor','k')

hold off

 Compare Data Sets Using Overlayed Area Graphs

5-25

Add Grid Lines

Set the tick marks along the x-axis to correspond to whole years. Draw a grid line for
each tick mark by setting the XGrid property to on. Display the grid lines on top of the
area graphs by setting the Layer property to top.

hAx = gca; % handle to current axes

hAx.XTick = years;

hAx.XGrid = 'on';

hAx.Layer = 'top';

5 Creating Specialized Plots

5-26

Add Title, Axis Labels, and Legend

Give the figure the title, "Profit Margin for 2004 to 2008". Add axis labels for sales and
years. Add a legend to the graph to indicate the areas of profits and expenses.

title('Profit Margin for 2004 to 2008')

xlabel('Years')

ylabel('Expenses + Profits = Sales in 1000s')

legend('Profits','Expenses')

 Compare Data Sets Using Overlayed Area Graphs

5-27

See Also
area | gca | hold | legend

5 Creating Specialized Plots

5-28

Offset Pie Slice with Greatest Contribution

This example shows how to create a pie graph and automatically offset the pie slice with
the greatest contribution.

Set up a three-column array, X, so that each column contains yearly sales data for a
specific product over a 5-year period.

X = [19.3, 22.1, 51.6

 34.2, 70.3, 82.4

 61.4, 82.9, 90.8

 50.5, 54.9, 59.1

 29.4, 36.3, 47.0];

Calculate the total sales for each product over the 5-year period by taking the sum of
each column. Store the results in product_totals.

product_totals = sum(X);

Use the max function to find the largest element in product_totals and return the
index of this element, ind.

[c,ind] = max(product_totals);

Use the pie function input argument, explode, to offset a pie slice. The explode
argument is a vector of zero and nonzero values where the nonzero values indicate the
slices to offset. Initialize explode as a three-element vector of zeros.

explode = zeros(1,3);

Use the index of the maximum element in product_totals to set the corresponding
explode element to 1.

explode(ind) = 1;

Create a pie chart of the sales totals for each product and offset the pie slice for the
product with the largest total sales.

figure

pie(product_totals,explode)

title('Sales Contributions of Three Products')

 Offset Pie Slice with Greatest Contribution

5-29

See Also
max | pie | zeros

Related Examples
• “Add Legend to Pie Chart”

5 Creating Specialized Plots

5-30

Add Legend to Pie Chart

This example shows how to add a legend to a pie chart that displays a description for
each slice.

Define x and create a pie chart.

x = [1,2,3];

figure

pie(x)

Specify the description for each pie slice in the cell array labels.

labels = {'Product A','Product B','Product C'};

 Add Legend to Pie Chart

5-31

Display a horizontal legend below the pie chart. Pass the descriptions contained
in labels to the legend function. Set the legend's Location property to
'southoutside' and its Orientation property to 'horizontal'.

legend(labels,'Location','southoutside','Orientation','horizontal')

The graph contains a pie chart and a horizontal legend with descriptions for each pie
slice.

See Also
legend | pie

5 Creating Specialized Plots

5-32

Related Examples
• “Offset Pie Slice with Greatest Contribution”

 Label Pie Chart With Text and Percent Values

5-33

Label Pie Chart With Text and Percent Values

This example shows how to label slices on a pie chart so that the labels contain custom
text and the precalculated percent values for each slice.

In this section...

“Create Pie Chart” on page 5-33
“Store Precalculated Percent Values” on page 5-34
“Combine Percent Values and Additional Text” on page 5-35
“Determine Horizontal Distance to Move Each Label” on page 5-36
“Position New Label” on page 5-37

Create Pie Chart

Define x and create a pie chart. Specify an output argument, h, to contain the text and
patch handles created by the pie function.

x = [1,2,3];

figure

h = pie(x);

5 Creating Specialized Plots

5-34

The pie function creates one text object and one patch object for each pie slice. By
default, MATLAB labels each pie slice with the percentage of the whole that slice
represents.

Note: To specify simple text labels, pass the strings directly to the pie function. For
example, pie(x,{'Item A','Item B','Item C'}).

Store Precalculated Percent Values

Extract the three text handles from h and store them in array hText. Get the percent
contributions for each pie slice from the String properties of the text objects.

 Label Pie Chart With Text and Percent Values

5-35

hText = findobj(h,'Type','text'); % text object handles

percentValues = get(hText,'String'); % percent values

Combine Percent Values and Additional Text

Specify the desired strings for the labels in the cell array str. Then, concatenate the
strings with the associated percent values in the cell array combinedstrings.

str = {'Item A: ';'Item B: ';'Item C: '}; % strings

combinedstrings = strcat(str,percentValues); % strings and percent values

Before changing the labels to the new combined strings, store the text Extent property
values for the current labels. The extent values gives the width and height of the
rectangle that encloses the current labels. You use these values to adjust the position of
the new labels.

oldExtents_cell = get(hText,'Extent'); % cell array

oldExtents = cell2mat(oldExtents_cell); % numeric array

Change the labels by setting the String properties of the text objects to
combinedstrings.

hText(1).String = combinedstrings(1);

hText(2).String = combinedstrings(2);

hText(3).String = combinedstrings(3);

5 Creating Specialized Plots

5-36

Determine Horizontal Distance to Move Each Label

Move each label so that it does not overlap the pie chart. First, get the updated extent
values for the new labels from the Extent properties. Use the new and old extent values
to find the change in width for each label.

newExtents_cell = get(hText,'Extent'); % cell array

newExtents = cell2mat(newExtents_cell); % numeric array

width_change = newExtents(:,3)-oldExtents(:,3);

Use the change in width to calculate the horizontal distance to move each label. Store the
calculated offsets in offset.

signValues = sign(oldExtents(:,1));

 Label Pie Chart With Text and Percent Values

5-37

offset = signValues.*(width_change/2);

Position New Label

The Position property of each text object contains a three-element vector, [x,y,z],
that specifies the location of the label in three-dimensions. Get the current label
positions and move each label to the left or the right by adding the calculated offset to
its horizontal position. Then, set the Position properties of the text objects to the new
values.

textPositions_cell = get(hText,{'Position'}); % cell array

textPositions = cell2mat(textPositions_cell); % numeric array

textPositions(:,1) = textPositions(:,1) + offset; % add offset

hText(1).Position = textPositions(1,:);

hText(2).Position = textPositions(2,:);

hText(3).Position = textPositions(3,:);

5 Creating Specialized Plots

5-38

The labels for each pie slice contain custom text with the calculated percentages and do
not overlap the pie chart.

See Also
cell2mat | findobj | pie

Related Examples
• “Add Legend to Pie Chart”

 Data Cursors with Histograms

5-39

Data Cursors with Histograms

When you use the Data Cursor tool on a histogram plot, it customizes the data tips
it displays in an appropriate way. Instead of providing x-, y-,z- coordinates, the datatips
display the following information:

• Number of observations falling into the selected bin
• The x value of the bin's center
• The lower and upper x values for the bin

For example, The following figures show a line plot and a histogram of count.dat,
a data set that contains three columns, giving hourly traffic counts at three different
locations. The plots depict the sum the values over the locations. Each graph displays two
datatips, but the datatips in the right-hand plot give information specific to histograms.

load count.dat

figure;

subplot(1,2,1); plot(count(:))

subplot(1,2,2); hist(count(:),5)

datacursormode on

Click to place a datatip or drag an existing one to a new location. You can add new
datatips to a plot by right-clicking, selecting Create new datatip, and clicking the
graph where you want to put it.

5 Creating Specialized Plots

5-40

When you add datatips to histograms or bar graphs showing groups of data, you can
move a datatip to any other bar by clicking inside that bar. If you use the cursor keys
to shift a datatip back or forth across the graph, the datatip moves to the preceding or
succeeding bar of the same color.

 Combine Stem Plot and Line Plot

5-41

Combine Stem Plot and Line Plot

This example shows how to create a graph with a stem plot and a line plot.

Define x as a vector with 60 linearly spaced elements. Define a and b as sine and cosine
values.

x = linspace(0,2*pi,60);

a = sin(x);

b = cos(x);

Create a stem plot of the linear combination of a and b. Return the handles to the
stemseries object created by the stem function.

figure

hStem = stem(x,a+b);

5 Creating Specialized Plots

5-42

To retain the stem plot so that the plot command does not replace it, set the hold state
to on. Overlay the stem plot with line plots of a and b. Specify a different color for each
line and use a dashed line style. Return the handles to the line objects created.

hold on

hLine = plot(x,a,'--r',x,b,'--g');

hold off

 Combine Stem Plot and Line Plot

5-43

To add a legend to the graph, use the legend function. Pass the stemseries handle and
line object handles to legend.

h = [hStem; hLine];

legend(h,'a+b','a = sin(x)','b = cos(x)')

5 Creating Specialized Plots

5-44

Label the axis and add a title to the graph.

xlabel('Time in \musecs')

ylabel('Magnitude')

title('Linear Combination of Two Functions')

 Combine Stem Plot and Line Plot

5-45

5 Creating Specialized Plots

5-46

Overlay Stairstep Plot and Line Plot

This example shows how to overlay a line plot on a stairstep plot.

Define the data to plot.

alpha = 0.01;

beta = 0.5;

t = 0:10;

f = exp(-alpha*t).*sin(beta*t);

Display f as a stairstep plot. Use the hold function to retain the stairstep plot. Add a
line plot of f using a dashed line with star markers.

stairs(t,f)

hold on

plot(t,f,'--*')

hold off

 Overlay Stairstep Plot and Line Plot

5-47

Use the axis function to set the axis limits. Label the x-axis and add a title to the graph.

axis([0,10,-1.2,1.2])

xlabel('t = 0:10')

title('Stairstep plot of e^{-(\alpha*t)} sin\beta*t')

5 Creating Specialized Plots

5-48

See Also
axis | plot | stairs

 Display Quiver Plot Over Contour Plot

5-49

Display Quiver Plot Over Contour Plot

This example shows how to add a quiver plot over a contour plot.

Create 10 contours of the peaks function.

n = -2.0:.2:2.0;

[X,Y,Z] = peaks(n);

contour(X,Y,Z,10)

Use the gradient function to find the numerical gradient of matrix Z. Store U as the
gradient in the x-direction and V as the gradient in the y-direction. Use a spacing of 0.2
between points in each direction.

5 Creating Specialized Plots

5-50

[U,V] = gradient(Z,0.2);

Use the quiver function to display arrows over the contour plot indicating the gradient
values.

hold on

quiver(X,Y,U,V)

hold off

 Projectile Path Over Time

5-51

Projectile Path Over Time

This example shows how to display the path of a projectile as a function of time using a
three-dimensional quiver plot.

Show the path of the following projectile using constants for velocity and acceleration, vz
and a.

vz = 10; % velocity constant

a = -32; % acceleration constant

Calculate z as the height as time varies from 0 to 1.

t = 0:.1:1;

z = vz*t + 1/2*a*t.^2;

Calculate the position in the x-direction and y-direction.

vx = 2;

x = vx*t;

vy = 3;

y = vy*t;

Compute the components of the velocity vectors and display the vectors using a 3-D
quiver plot. Change the viewpoint of the axes to [70,18].

u = gradient(x);

v = gradient(y);

w = gradient(z);

scale = 0;

figure

quiver3(x,y,z,u,v,w,scale)

view([70,18])

5 Creating Specialized Plots

5-52

 Label Contour Plot Levels

5-53

Label Contour Plot Levels

This example shows how to label each contour line with its associated value.

The contour matrix, C, is an optional output argument returned by contour, contour3,
and contourf. The clabel function uses values from C to display labels for 2-D contour
lines.

Display eight contour levels of the peaks function and label the contours. clabel labels
only contour lines that are large enough to contain an inline label.

Z = peaks;

figure

[C,h] = contour(Z,8);

clabel(C,h)

title('Contours Labeled Using clabel(C,h)')

5 Creating Specialized Plots

5-54

To interactively select the contours to label using the mouse, pass the manual option
to clabel, for example, clabel(C,h,'manual'). This command displays a crosshair
cursor when the mouse is within the figure. Click the mouse to label the contour line
closest to the cursor.

See Also
clabel | contour | contour3 | contourf

 Change Fill Colors for Contour Plot

5-55

Change Fill Colors for Contour Plot

This example shows how to change the colors used in a filled contour plot.

Change Colormap

Set the colors for the filled contour plot by changing the colormap. Pass the predefined
colormap name, hot, to the colormap function.

[X,Y,Z] = peaks;

figure

contourf(X,Y,Z,20)

colormap(hot)

title('Hot Colormap')

5 Creating Specialized Plots

5-56

Control Mapping of Data Values to Colormap

Use only the colors in the center of the hot colormap by setting the color axis scaling to a
range much larger than the range of values in matrix Z. The caxis function controls the
mapping of data values into the colormap. Use this function to set the color axis scaling.

caxis([-20,20])

title('Center of Hot Colormap')

See Also
caxis | colormap | contourf

 Highlight Specific Contour Levels

5-57

Highlight Specific Contour Levels

This example shows how to highlight contours at particular levels.

Define Z as the matrix returned from the peaks function.

Z = peaks(100);

Round the minimum and maximum data values in Z and store these values in zmin and
zmax, respectively. Define zlevs as 40 values between zmin and zmax.

zmin = floor(min(Z(:)));

zmax = ceil(max(Z(:)));

zinc = (zmax - zmin) / 40;

zlevs = zmin:zinc:zmax;

Plot the contour lines.

figure

contour(Z,zlevs)

5 Creating Specialized Plots

5-58

Define zindex as a vector of integer values between zmin and zmax indexed by 2.

zindex = zmin:2:zmax;

Retain the previous contour plot. Create a second contour plot and use zindex to
highlight contour lines at every other integer value. Set the line width to 2.

hold on

contour(Z,zindex,'LineWidth',2)

hold off

 Highlight Specific Contour Levels

5-59

See Also
ceil | contour | floor | hold | max | min

5 Creating Specialized Plots

5-60

Contour Plot in Polar Coordinates

This example shows how to create a contour plot for data defined in a polar coordinate
system.

Display Surface to Contour

Set up a grid in polar coordinates and convert the coordinates to Cartesian coordinates.

th = (0:5:360)*pi/180;

r = 0:.05:1;

[TH,R] = meshgrid(th,r);

[X,Y] = pol2cart(TH,R);

Generate the complex matrix Z on the interior of the unit circle.

Z = X + 1i*Y;

Display a surface of the mathematical function . Use the summer colormap.

f = (Z.^4-1).^(1/4);

figure

surf(X,Y,abs(f))

colormap summer

 Contour Plot in Polar Coordinates

5-61

Display the unit circle beneath the surface and add labels to the graph.

hold on

surf(X,Y,zeros(size(X)))

hold off

xlabel('Real')

ylabel('Imaginary')

zlabel('abs(f)')

5 Creating Specialized Plots

5-62

Contour Plot in Cartesian Coordinates

Display a contour plot of the surface in Cartesian coordinates.

figure

contour(X,Y,abs(f),30)

axis equal

xlabel('Real')

ylabel('Imaginary')

 Contour Plot in Polar Coordinates

5-63

Contour Plot in Polar Coordinates

Display a contour plot of the surface in a polar axes. Use the polar function to create a
polar axes, and then delete the line created with polar.

h = polar([0 2*pi], [0 1]);

delete(h)

5 Creating Specialized Plots

5-64

With hold on, display the contour plot on the polar grid.

hold on

contour(X,Y,abs(f),30)

 Contour Plot in Polar Coordinates

5-65

See Also
colormap | contour | meshgrid | pol2cart | polar | surf

5 Creating Specialized Plots

5-66

Animation Techniques

In this section...

“Updating the Screen” on page 5-66
“Optimizing Performance” on page 5-66

You can use three basic techniques for creating animations in MATLAB:

• Update the properties of a graphics object and display the updates on the screen. This
technique is useful for creating animations when most of the graph remains the same.
For example, set the XData and YData properties repeatedly to move an object in the
graph.

• Apply transforms to objects. This technique is useful when you want to operate on the
position and orientation of a group of objects together. Group the objects as children
under a transform object. Create the transform object using hgtransform. Setting
the Matrix property of the transform object adjusts the position of all its children.

• Create a movie. Movies are useful if you have a complex animation that does not
draw quickly in real time, or if you want to store an animation to replay it. Use the
getframe and movie functions to create a movie.

Updating the Screen

In some cases, MATLAB does not update the screen until the code finishes executing.
Use one of the drawnow commands to display the updates on the screen throughout the
animation.

Optimizing Performance

To optimize performance, consider these techniques:

• Use the animatedline function to create line animations of streaming data.
• Update properties of an existing object instead of creating new graphics objects.
• Set the axis limits (XLim, YLim, ZLim) or change the associated mode properties

to manual mode (XLimMode, YLimMode, ZLimMode) so that MATLAB does not
recalculate the values each time the screen updates. When you set the axis limits, the
associated mode properties change to manual mode.

 Animation Techniques

5-67

• Avoid creating a legend or other annotations within a loop. Add the annotation after
the loop.

For more information on optimizing performance, see “Graphics Performance”.

Related Examples
• “Trace Marker Along Line” on page 5-68
• “Move Group of Objects Along Line” on page 5-71
• “Line Animations” on page 5-79
• “Record Animation for Playback” on page 5-82

5 Creating Specialized Plots

5-68

Trace Marker Along Line

This example shows how to trace a marker along a line by updating the data properties
of the marker.

Plot a sine wave and a red marker at the beginning of the line. Set the axis limits mode
to manual to avoid recalculating the limits throughout the animation loop.

x = linspace(0,10,10000);

y = sin(x);

plot(x,y)

hold on

p = plot(x(1),y(1),'o','MarkerFaceColor','red');

hold off

axis manual

 Trace Marker Along Line

5-69

Move the marker along the line by updating the XData and YData properties in a loop.
Use a “drawnow” or drawnow update command to display the updates on the screen.
drawnow update is fastest, but it might not draw every frame on the screen.

for k = 2:length(x)

 p.XData = x(k);

 p.YData = y(k);

 drawnow update

end

5 Creating Specialized Plots

5-70

The animation shows the marker moving along the line.

See Also
drawnow | linspace | plot

Related Examples
• “Move Group of Objects Along Line” on page 5-71
• “Animate Graphics Object” on page 5-75
• “Record Animation for Playback” on page 5-82
• “Line Animations” on page 5-79

 Move Group of Objects Along Line

5-71

Move Group of Objects Along Line

This example shows how to move a group of objects together along a line using
transforms.

Plot a sine wave and set the axis limits mode to manual to avoid recalculating the limits
during the animation loop.

x = linspace(-6,6,1000);

y = sin(x);

plot(x,y)

axis manual

5 Creating Specialized Plots

5-72

Create a transform object and set its parent to the current axes. Plot a marker and a
text annotation at the beginning of the line. Use the num2str function to convert the y-
value at that point to a text string. Group the two objects by setting their parents to the
transform object.

ax = gca;

h = hgtransform('Parent',ax);

hold on

plot(x(1),y(1),'o','Parent',h);

hold off

t = text(x(1),y(1),num2str(y(1)),'Parent',h,...

 'VerticalAlignment','top','FontSize',14);

 Move Group of Objects Along Line

5-73

Move the marker and text to each subsequent point along the line by updating the
Matrix property of the transform object. Use the x and y values of the next point in
the line and the first point in the line to determine the transform matrix. Update the
text string to match the y-value as it moves along the line. Use drawnow to display the
updates to the screen after each iteration.

for k = 2:length(x)

 m = makehgtform('translate',x(k)-x(1),y(k)-y(1),0);

 h.Matrix = m;

 t.String = num2str(y(k));

 drawnow

end

The animation shows the marker and text moving together along the line.

5 Creating Specialized Plots

5-74

If you have a lot of data, you can use drawnow update instead of “drawnow” for a faster
animation. However, drawnow update might not draw every frame on the screen if the
previous frame is still rendering.

See Also
axis | drawnow | hgtransform | makehgtform | plot | text

Related Examples
• “Animate Graphics Object” on page 5-75
• “Record Animation for Playback” on page 5-82
• “Line Animations” on page 5-79

 Animate Graphics Object

5-75

Animate Graphics Object

This example shows how to animate a triangle looping around the inside of a circle by
updating the data properties of the triangle.

Plot the circle and set the axis limits so that the data units are the same in both
directions.

theta = linspace(-pi,pi);

xc = cos(theta);

yc = -sin(theta);

plot(xc,yc);

axis equal

5 Creating Specialized Plots

5-76

Use the area function to draw a flat triangle. Then, change the value of one of the
triangle vertices using the (x,y) coordinates of the circle. Change the value in a loop to
create an animation. Use a “drawnow” or drawnow update command to display the
updates after each iteration. drawnow update is fastest, but it might not draw every
frame on the screen.

xt = [-1 0 1 -1];

yt = [0 0 0 0];

hold on

t = area(xt,yt); % initial flat triangle

hold off

for j = 1:length(theta)-10

 xt(2) = xc(j); % determine new vertex value

 yt(2) = yc(j);

 t.XData = xt; % update data properties

 t.YData = yt;

 drawnow update % display updates

end

 Animate Graphics Object

5-77

The animation shows the triangle looping around the inside of the circle.

See Also
area | axis | drawnow | hold | plot

Related Examples
• “Trace Marker Along Line” on page 5-68
• “Line Animations” on page 5-79
• “Record Animation for Playback” on page 5-82

5 Creating Specialized Plots

5-78

More About
• “Animation Techniques” on page 5-66

 Line Animations

5-79

Line Animations

This example shows how to create an animation of two growing lines. The
animatedline function helps you to optimize line animations. It allows you to add new
points to a line without redefining existing points.

Create Lines and Add Points

Create two animated lines of different colors. Then, add points to the lines in a loop. Set
the axis limits before the loop so that to avoid recalculating the limits each time through
the loop. Use a “drawnow” or drawnow update command to display the updates on the
screen after adding the new points.

a1 = animatedline('Color',[0 .7 .7]);

a2 = animatedline('Color',[0 .5 .5]);

axis([0 20 -1 1])

x = linspace(0,20,10000);

for k = 1:length(x);

 % first line

 xk = x(k);

 ysin = sin(xk);

 addpoints(a1,xk,ysin);

 % second line

 ycos = cos(xk);

 addpoints(a2,xk,ycos);

 % update screen

 drawnow update

end

5 Creating Specialized Plots

5-80

The animation shows two lines that grow as they accumulate data.

Query Points of Line

Query the points of the first animated line.

[x,y] = getpoints(a1);

x and y are vectors that contain the values defining the points of the sine wave.

See Also
addpoints | animatedline | clearpoints | drawnow | getpoints

 Line Animations

5-81

Related Examples
• “Trace Marker Along Line” on page 5-68
• “Move Group of Objects Along Line” on page 5-71
• “Record Animation for Playback” on page 5-82

More About
• “Animation Techniques” on page 5-66

5 Creating Specialized Plots

5-82

Record Animation for Playback

These examples show how to record animations as movies that you can replay.

In this section...

“Record and Play Back Movie” on page 5-82
“Capture Entire Figure for Movie” on page 5-83

Record and Play Back Movie

Create a series of plots within a loop and capture each plot as a frame. Ensure the axis
limits stay constant by setting them each time through the loop. Store the frames in M.

for k = 1:16

 plot(fft(eye(k+16)))

 axis([-1 1 -1 1])

 M(k) = getframe;

end

 Record Animation for Playback

5-83

Play back the movie five times using the movie function.

figure

movie(M,5)

Capture Entire Figure for Movie

Include a slider on the left side of the figure. Capture the entire figure window by
specifying the figure as an input argument to the getframe function.

figure

u = uicontrol('Style','slider','Position',[10 50 20 340],...

 'Min',1,'Max',16,'Value',1);

5 Creating Specialized Plots

5-84

for k = 1:16

 plot(fft(eye(k+16)))

 axis([-1 1 -1 1])

 u.Value = k;

 M(k) = getframe(gcf);

end

Play back the movie fives times. Movies play back within the current axes. Create a
new figure and an axes to fill the figure window so that the movie looks like the original
animation.

figure

axes('Position',[0 0 1 1])

movie(M,5)

 Record Animation for Playback

5-85

See Also
axes | axis | eye | fft | getframe | movie | plot

Related Examples
• “Animate Graphics Object” on page 5-75
• “Line Animations” on page 5-79

More About
• “Animation Techniques” on page 5-66

5-86

6

Displaying Bit-Mapped Images

• “Working with Images in MATLAB Graphics” on page 6-2
• “Image Types” on page 6-5
• “8-Bit and 16-Bit Images” on page 6-10
• “Read, Write, and Query Image Files” on page 6-18
• “Displaying Graphics Images” on page 6-22
• “The Image Object and Its Properties” on page 6-27
• “Printing Images” on page 6-34
• “Convert Image Graphic or Data Type” on page 6-35

6 Displaying Bit-Mapped Images

6-2

Working with Images in MATLAB Graphics

In this section...

“What Is Image Data?” on page 6-2
“Supported Image Formats” on page 6-3
“Functions for Reading, Writing, and Displaying Images” on page 6-4

What Is Image Data?

The basic MATLAB data structure is the array, an ordered set of real or complex
elements. An array is naturally suited to the representation of images, real-valued,
ordered sets of color or intensity data. (An array is suited for complex-valued images.)

In the MATLAB workspace, most images are represented as two-dimensional arrays
(matrices), in which each element of the matrix corresponds to a single pixel in the
displayed image. For example, an image composed of 200 rows and 300 columns of
different colored dots stored as a 200-by-300 matrix. Some images, such as RGB, require
a three-dimensional array, where the first plane in the third dimension represents the
red pixel intensities, the second plane represents the green pixel intensities, and the
third plane represents the blue pixel intensities.

This convention makes working with graphics file format images similar to working with
any other type of matrix data. For example, you can select a single pixel from an image
matrix using normal matrix subscripting:

I(2,15)

This command returns the value of the pixel at row 2, column 15 of the image I.

The following sections describe the different data and image types, and give details about
how to read, write, work with, and display graphics images; how to alter the display
properties and aspect ratio of an image during display; how to print an image; and how to
convert the data type or graphics format of an image.

Data Types

MATLAB math supports three different numeric classes for image display:

• double-precision floating-point (double)

 Working with Images in MATLAB Graphics

6-3

• 16-bit unsigned integer (uint16)
• 8-bit unsigned integer (uint8)

The image display commands interpret data values differently depending on the numeric
class the data is stored in. “8-Bit and 16-Bit Images” on page 6-10 includes details on
the inner workings of the storage for 8- and 16-bit images.

By default, most data occupy arrays of class double. The data in these arrays is
stored as double-precision (64-bit) floating-point numbers. All MATLAB functions and
capabilities work with these arrays.

For images stored in one of the graphics file formats supported by MATLAB functions,
however, this data representation is not always ideal. The number of pixels in such an
image can be very large; for example, a 1000-by-1000 image has a million pixels. Since at
least one array element represents each pixel , this image requires about 8 megabytes of
memory if it is stored as class double.

To reduce memory requirements, you can store image data in arrays of class uint8 and
uint16. The data in these arrays is stored as 8-bit or 16-bit unsigned integers. These
arrays require one-eighth or one-fourth as much memory as data in double arrays.

Bit Depth

MATLAB input functions read the most commonly used bit depths (bits per pixel) of any
of the supported graphics file formats. When the data is in memory, it can be stored as
uint8, uint16, or double. For details on which bit depths are appropriate for each
supported format, see imread and imwrite.

Supported Image Formats

MATLAB commands read, write, and display several types of graphics file formats
for images. As with MATLAB generated images, once a graphics file format image is
displayed, it becomes a Handle Graphics® image object. MATLAB supports the following
graphics file formats, along with others:

• BMP (Microsoft® Windows® Bitmap)
• GIF (Graphics Interchange Files)
• HDF (Hierarchical Data Format)
• JPEG (Joint Photographic Experts Group)

6 Displaying Bit-Mapped Images

6-4

• PCX (Paintbrush)
• PNG (Portable Network Graphics)
• TIFF (Tagged Image File Format)
• XWD (X Window Dump)

For more information about the bit depths and image types supported for these formats,
see imread and imwrite.

Functions for Reading, Writing, and Displaying Images

Images are essentially two-dimensional matrices, so many MATLAB functions can
operate on and display images. The following table lists the most useful ones. The
sections that follow describe these functions in more detail.

Function Purpose Function Group

axis Plot axis scaling and appearance. Display
image Display image (create image object). Display
imagesc Scale data and display as image. Display
imread Read image from graphics file. File I/O
imwrite Write image to graphics file. File I/O
imfinfo Get image information from graphics file. Utility
ind2rgb Convert indexed image to RGB image. Utility

 Image Types

6-5

Image Types

In this section...

“Indexed Images” on page 6-5
“Intensity Images” on page 6-7
“RGB (Truecolor) Images” on page 6-8

Indexed Images

An indexed image consists of a data matrix, X, and a colormap matrix, map. map is an m-
by-3 array of class double containing floating-point values in the range [0, 1]. Each row
of map specifies the red, green, and blue components of a single color. An indexed image
uses “direct mapping” of pixel values to colormap values. The color of each image pixel
is determined by using the corresponding value of X as an index into map. Values of X
therefore must be integers. The value 1 points to the first row in map, the value 2 points
to the second row, and so on. Display an indexed image with the statements

image(X); colormap(map)

A colormap is often stored with an indexed image and is automatically loaded with the
image when you use the imread function. However, you are not limited to using the
default colormap—use any colormap that you choose. The description for the property
CDataMapping describes how to alter the type of mapping used.

The next figure illustrates the structure of an indexed image. The pixels in the image
are represented by integers, which are pointers (indices) to color values stored in the
colormap.

6 Displaying Bit-Mapped Images

6-6

The relationship between the values in the image matrix and the colormap depends
on the class of the image matrix. If the image matrix is of class double, the value 1
points to the first row in the colormap, the value 2 points to the second row, and so on.
If the image matrix is of class uint8 or uint16, there is an offset—the value 0 points
to the first row in the colormap, the value 1 points to the second row, and so on. The
offset is also used in graphics file formats to maximize the number of colors that can be
supported. In the preceding image, the image matrix is of class double. Because there is
no offset, the value 5 points to the fifth row of the colormap.

Note: When using the painters renderer on the Windows platform, you should only use
256 colors when attempting to display an indexed image. Larger colormaps can lead to
unexpected colors because the painters algorithm uses the Windows 256 color palette,
which graphics drivers and graphics hardware are known to handle differently. To work
around this issue, use the Zbuffer or OpenGL renderer, as appropriate.

 Image Types

6-7

Intensity Images

An intensity image is a data matrix, I, whose values represent intensities within some
range. An intensity image is represented as a single matrix, with each element of the
matrix corresponding to one image pixel. The matrix can be of class double, uint8,
or uint16. While intensity images are rarely saved with a colormap, a colormap is
still used to display them. In essence, handles intensity images are treated as indexed
images.

This figure depicts an intensity image of class double.

To display an intensity image, use the imagesc (“image scale”) function, which enables
you to set the range of intensity values. imagesc scales the image data to use the full
colormap. Use the two-input form of imagesc to display an intensity image, for example:

imagesc(I,[0 1]); colormap(gray);

The second input argument to imagesc specifies the desired intensity range. The
imagesc function displays I by mapping the first value in the range (usually 0) to the

6 Displaying Bit-Mapped Images

6-8

first colormap entry, and the second value (usually 1) to the last colormap entry. Values
in between are linearly distributed throughout the remaining colormap colors.

Although it is conventional to display intensity images using a grayscale colormap, it
is possible to use other colormaps. For example, the following statements display the
intensity image I in shades of blue and green:

imagesc(I,[0 1]); colormap(winter);

To display a matrix A with an arbitrary range of values as an intensity image, use
the single-argument form of imagesc. With one input argument, imagesc maps the
minimum value of the data matrix to the first colormap entry, and maps the maximum
value to the last colormap entry. For example, these two lines are equivalent:

imagesc(A); colormap(gray)

imagesc(A,[min(A(:)) max(A(:))]); colormap(gray)

RGB (Truecolor) Images

An RGB image, sometimes referred to as a truecolor image, is stored as an m-by-n-
by-3 data array that defines red, green, and blue color components for each individual
pixel. RGB images do not use a palette. The color of each pixel is determined by the
combination of the red, green, and blue intensities stored in each color plane at the
pixel's location. Graphics file formats store RGB images as 24-bit images, where the red,
green, and blue components are 8 bits each. This yields a potential of 16 million colors.
The precision with which a real-life image can be replicated has led to the nickname
“truecolor image.”

An RGB MATLAB array can be of class double, uint8, or uint16. In an RGB array
of class double, each color component is a value between 0 and 1. A pixel whose color
components are (0,0,0) is displayed as black, and a pixel whose color components are
(1,1,1) is displayed as white. The three color components for each pixel are stored
along the third dimension of the data array. For example, the red, green, and blue
color components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.

To display the truecolor image RGB, use the image function:

image(RGB)

The next figure shows an RGB image of class double.

 Image Types

6-9

To determine the color of the pixel at (2,3), look at the RGB triplet stored in (2,3,1:3).
Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains 0.1608, and (2,3,3) contains
0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

6 Displaying Bit-Mapped Images

6-10

8-Bit and 16-Bit Images

In this section...

“Indexed Images” on page 6-10
“Intensity Images” on page 6-11
“RGB Images” on page 6-11
“Mathematical Operations Support for uint8 and uint16” on page 6-12
“Other 8-Bit and 16-Bit Array Support” on page 6-12
“Converting an 8-Bit RGB Image to Grayscale” on page 6-13
“Summary of Image Types and Numeric Classes” on page 6-16

Indexed Images

Double-precision (64-bit) floating-point numbers are the default MATLAB representation
for numeric data. However, to reduce memory requirements for working with images, you
can store images as 8-bit or 16-bit unsigned integers using the numeric classes uint8
or uint16, respectively. An image whose data matrix has class uint8 is called an 8-bit
image; an image whose data matrix has class uint16 is called a 16-bit image.

The image function can display 8- or 16-bit images directly without converting them to
double precision. However, image interprets matrix values slightly differently when the
image matrix is uint8 or uint16. The specific interpretation depends on the image type.

If the class of X is uint8 or uint16, its values are offset by 1 before being used as
colormap indices. The value 0 points to the first row of the colormap, the value 1 points to
the second row, and so on. The image command automatically supplies the proper offset,
so the display method is the same whether X is double, uint8, or uint16:

image(X); colormap(map);

The colormap index offset for uint8 and uint16 data is intended to support standard
graphics file formats, which typically store image data in indexed form with a 256-entry
colormap. The offset allows you to manipulate and display images of this form using the
more memory-efficient uint8 and uint16 arrays.

Because of the offset, you must add 1 to convert a uint8 or uint16 indexed image to
double. For example:

 8-Bit and 16-Bit Images

6-11

X64 = double(X8) + 1;

 or

X64 = double(X16) + 1;

Conversely, subtract 1 to convert a double indexed image to uint8 or uint16:

X8 = uint8(X64 - 1);

 or

X16 = uint16(X64 - 1);

Intensity Images

The range of double image arrays is usually [0, 1], but the range of 8-bit intensity
images is usually [0, 255] and the range of 16-bit intensity images is usually [0, 65535].
Use the following command to display an 8-bit intensity image with a grayscale
colormap:

imagesc(I,[0 255]); colormap(gray);

To convert an intensity image from double to uint16, first multiply by 65535:

I16 = uint16(round(I64*65535));

Conversely, divide by 65535 after converting a uint16 intensity image to double:

I64 = double(I16)/65535;

RGB Images

The color components of an 8-bit RGB image are integers in the range [0, 255] rather
than floating-point values in the range [0, 1]. A pixel whose color components are
(255,255,255) is displayed as white. The image command displays an RGB image
correctly whether its class is double, uint8, or uint16:

image(RGB);

To convert an RGB image from double to uint8, first multiply by 255:

RGB8 = uint8(round(RGB64*255));

Conversely, divide by 255 after converting a uint8 RGB image to double:

RGB64 = double(RGB8)/255

6 Displaying Bit-Mapped Images

6-12

To convert an RGB image from double to uint16, first multiply by 65535:

RGB16 = uint16(round(RGB64*65535));

Conversely, divide by 65535 after converting a uint16 RGB image to double:

RGB64 = double(RGB16)/65535;

Mathematical Operations Support for uint8 and uint16

To use the following MATLAB functions with uint8 and uint16 data, first convert the
data to type double:

• conv2

• convn

• fft2

• fftn

For example, if X is a uint8 image, cast the data to type double:

fft(double(X))

In these cases, the output is always double.

The sum function returns results in the same type as its input, but provides an option to
use double precision for calculations.

MATLAB Integer Mathematics

See “Arithmetic Operations on Integer Classes” for more information on how
mathematical functions work with data types that are not doubles.

Most Image Processing Toolbox™ functions accept uint8 and uint16 input. If you plan
to do sophisticated image processing on uint8 or uint16 data, consider including that
toolbox in your MATLAB computing environment.

Other 8-Bit and 16-Bit Array Support

You can perform several other operations on uint8 and uint16 arrays, including:

 8-Bit and 16-Bit Images

6-13

• Reshaping, reordering, and concatenating arrays using the functions reshape, cat,
permute, and the [] and ' operators

• Saving and loading uint8 and uint16 arrays in MAT-files using save and load.
(Remember that if you are loading or saving a graphics file format image, you must
use the commands imread and imwrite instead.)

• Locating the indices of nonzero elements in uint8 and uint16 arrays using find.
However, the returned array is always of class double.

• Relational operators

Converting an 8-Bit RGB Image to Grayscale

You can perform arithmetic operations on integer data, which enables you to convert
image types without first converting the numeric class of the image data.

This example reads an 8-bit RGB image into a MATLAB variable and converts it to a
grayscale image:

rgb_img = imread('ngc6543a.jpg'); % Load the image

image(rgb_img) % Display the RGB image

axis image;

6 Displaying Bit-Mapped Images

6-14

Note: This image was created with the support of the Space Telescope Science Institute,
operated by the Association of Universities for Research in Astronomy, Inc., from NASA
contract NAs5-26555, and is reproduced with permission from AURA/STScI. Digital
renditions of images produced by AURA/STScI are obtainable royalty-free. Credits: J.P.
Harrington and K.J. Orkowski (University of Maryland), and NASA.

Calculate the monochrome luminance by combining the RGB values according to the
NTSC standard, which applies coefficients related to the eye's sensitivity to RGB colors:

I = .2989*rgb_img(:,:,1)...

 +.5870*rgb_img(:,:,2)...

 8-Bit and 16-Bit Images

6-15

 +.1140*rgb_img(:,:,3);

I is an intensity image with integer values ranging from a minimum of zero:

min(I(:))

ans =

 0

to a maximum of 255:

max(I(:))

ans =

 255

To display the image, use a grayscale colormap with 256 values. This avoids the need
to scale the data-to-color mapping, which is required if you use a colormap of a different
size. Use the imagesc function in cases where the colormap does not contain one entry
for each data value.

Now display the image in a new figure using the gray colormap:

figure; colormap(gray(256)); image(I);

axis image;

6 Displaying Bit-Mapped Images

6-16

Related Information

Other colormaps with a range of colors that vary continuously from dark to light can
produce usable images. For example, try colormap(summer(256)) for a classic
oscilloscope look. See colormap for more choices.

The brighten function enables you to increase or decrease the color intensities in a
colormap to compensate for computer display differences or to enhance the visibility of
faint or bright regions of the image (at the expense of the opposite end of the range).

Summary of Image Types and Numeric Classes

 8-Bit and 16-Bit Images

6-17

This table summarizes how data matrix elements are interpreted as pixel colors,
depending on the image type and data class.

Image Type double Data uint8 or uint16 Data

Indexed Image is an m-by-n array of
integers in the range [1, p].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1].

Image is an m-by-n array of
integers in the range [0, p –1].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1].

Intensity Image is an m-by-n array of
floating-point values that are
linearly scaled to produce
colormap indices. The typical
range of values is [0, 1].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1] and is typically grayscale.

Image is an m-by-n array of
integers that are linearly scaled
to produce colormap indices. The
typical range of values is [0, 255]
or [0, 65535].

Colormap is a p-by-3 array of
floating-point values in the range
[0, 1] and is typically grayscale.

RGB (Truecolor) Image is an m-by-n-by-3 array of
floating-point values in the range
[0, 1].

Image is an m-by-n-by-3 array of
integers in the range [0, 255] or [0,
65535].

6 Displaying Bit-Mapped Images

6-18

Read, Write, and Query Image Files

In this section...

“Working with Image Formats” on page 6-18
“Reading a Graphics Image” on page 6-19
“Writing a Graphics Image” on page 6-19
“Subsetting a Graphics Image (Cropping)” on page 6-20
“Obtaining Information About Graphics Files” on page 6-21

Working with Image Formats

In its native form, a graphics file format image is not stored as a MATLAB matrix,
or even necessarily as a matrix. Most graphics files begin with a header containing
format-specific information tags, and continue with bitmap data that can be read
as a continuous stream. For this reason, you cannot use the standard MATLAB I/O
commands load and save to read and write a graphics file format image.

Call special MATLAB functions to read and write image data from graphics file formats:

• To read a graphics file format image use imread.
• To write a graphics file format image, use imwrite.
• To obtain information about the nature of a graphics file format image, use imfinfo.

This table gives a clearer picture of which MATLAB commands should be used with
which image types.

Procedure Functions to Use

Load or save a matrix as a MAT-file. load

save

Load or save graphics file format image, e.g., BMP,
TIFF.

imread

imwrite

Display any image loaded into the MATLAB workspace. image

 Read, Write, and Query Image Files

6-19

Procedure Functions to Use

imagesc

Utilities imfinfo

ind2rgb

Reading a Graphics Image

The imread function reads an image from any supported graphics image file in any of
the supported bit depths. Most of the images that you read are 8-bit. When these are
read into memory, they are stored as class uint8. The main exception to this rule is
MATLAB support for 16-bit data for PNG and TIFF images; if you read a 16-bit PNG or
TIFF image, it is stored as class uint16.

Note For indexed images, imread always reads the colormap into an array of class
double, even though the image array itself can be of class uint8 or uint16.

The following commands read the image ngc6543a.jpg into the workspace variable RGB
and then displays the image using the image function:

RGB = imread('ngc6543a.jpg');

image(RGB)

You can write (save) image data using the imwrite function. The statements

load clown % An image that is included with MATLAB

imwrite(X,map,'clown.bmp')

create a BMP file containing the clown image.

Writing a Graphics Image

When you save an image using imwrite, the default behavior is to automatically
reduce the bit depth to uint8. Many of the images used in MATLAB are 8-bit, and most
graphics file format images do not require double-precision data. One exception to the
rule for saving the image data as uint8 is that PNG and TIFF images can be saved as
uint16. Because these two formats support 16-bit data, you can override the MATLAB

6 Displaying Bit-Mapped Images

6-20

default behavior by specifying uint16 as the data type for imwrite. The following
example shows writing a 16-bit PNG file using imwrite.

imwrite(I,'clown.png','BitDepth',16);

Subsetting a Graphics Image (Cropping)

Sometimes you want to work with only a portion of an image file or you want to break
it up into subsections. Specify the intrinsic coordinates of the rectangular subsection
you want to work with and save it to a file from the command line. If you do not know
the coordinates of the corner points of the subsection, choose them interactively, as the
following example shows:

% Read RGB image from graphics file.

im = imread('street2.jpg');

% Display image with true aspect ratio

image(im); axis image

% Use ginput to select corner points of a rectangular

% region by pointing and clicking the mouse twice

p = ginput(2);

% Get the x and y corner coordinates as integers

sp(1) = min(floor(p(1)), floor(p(2))); %xmin

sp(2) = min(floor(p(3)), floor(p(4))); %ymin

sp(3) = max(ceil(p(1)), ceil(p(2))); %xmax

sp(4) = max(ceil(p(3)), ceil(p(4))); %ymax

% Index into the original image to create the new image

MM = im(sp(2):sp(4), sp(1): sp(3),:);

% Display the subsetted image with appropriate axis ratio

figure; image(MM); axis image

% Write image to graphics file.

imwrite(MM,'street2_cropped.tif')

If you know what the image corner coordinates should be, you can manually define sp in
the preceding example rather than using ginput.

You can also display a “rubber band box” as you interact with the image to subset it. See
the code example for rbbox for details. For further information, see the documentation
for the ginput and image functions.

 Read, Write, and Query Image Files

6-21

Obtaining Information About Graphics Files

The imfinfo function enables you to obtain information about graphics files in any of
the standard formats listed earlier. The information you obtain depends on the type of
file, but it always includes at least the following:

• Name of the file, including the folder path if the file is not in the current folder
• File format
• Version number of the file format
• File modification date
• File size in bytes
• Image width in pixels
• Image height in pixels
• Number of bits per pixel
• Image type: RGB (truecolor), intensity (grayscale), or indexed

6 Displaying Bit-Mapped Images

6-22

Displaying Graphics Images

In this section...

“Image Types and Display Methods” on page 6-22
“Controlling Aspect Ratio and Display Size” on page 6-24

Image Types and Display Methods

To display a graphics file image, use either image or imagesc. For example, read the
image ngc6543a.jpg to a variable RGB and display the image using the image function.
Change the axes aspect ratio to the true ratio using axis command.

RGB = imread('ngc6543a.jpg');

image(RGB);

axis image;

 Displaying Graphics Images

6-23

This table summarizes display methods for the three types of images.

Image Type Display Commands Uses Colormap Colors

Indexed image(X); colormap(map) Yes

Intensity imagesc(I,[0 1]);

colormap(gray)

Yes

RGB (truecolor) image(RGB) No

6 Displaying Bit-Mapped Images

6-24

Controlling Aspect Ratio and Display Size

The image function displays the image in a default-sized figure and axes. The image
stretches or shrinks to fit the display area. Sometimes you want the aspect ratio of the
display to match the aspect ratio of the image data matrix. The easiest way to do this is
with the axis image command.

For example, these commands display the earth image using the default figure and axes
positions:

load earth

image(X); colormap(map)

 Displaying Graphics Images

6-25

The elongated globe results from stretching the image display to fit the axes position.
Use the axis image command to force the aspect ratio to be one-to-one.

axis image

The axis image command works by setting the DataAspectRatio property of the
axes object to [1 1 1]. See axis and axes for more information on how to control the
appearance of axes objects.

Sometimes you want to display an image so that each element in the data matrix
corresponds to a single screen pixel. To display an image with this one-to-one matrix-
element-to-screen-pixel mapping, you need to resize the figure and axes. For example,
these commands display the earth image so that one data element corresponds to one
screen pixel:

6 Displaying Bit-Mapped Images

6-26

[m,n] = size(X);

figure('Units','pixels','Position',[100 100 n m])

image(X); colormap(map)

set(gca,'Position',[0 0 1 1])

The figure's Position property is a four-element vector that specifies the figure's
location on the screen as well as its size. The figure command positions the figure
so that its lower left corner is at position (100,100) on the screen and so that its width
and height match the image width and height. Setting the axes position to [0 0 1 1] in
normalized units creates an axes that fills the figure. The resulting picture is shown.

 The Image Object and Its Properties

6-27

The Image Object and Its Properties

In this section...

“Image CData” on page 6-27
“Image CDataMapping” on page 6-27
“XData and YData” on page 6-28
“Add Text to Image Data” on page 6-30
“Additional Techniques for Fast Image Updating” on page 6-32

Image CData

Note: The image and imagesc commands create image objects. Image objects are
children of axes objects, as are line, patch, surface, and text objects. Like all Handle
Graphics objects, the image object has a number of properties you can set to fine-tune
its appearance on the screen. The most important properties of the image object with
respect to appearance are CData, CDataMapping, XData, and YData. These properties
are discussed in this and the following sections. For detailed information about these and
all the properties of the image object, see image.

The CData property of an image object contains the data array. In the following
commands, h is the handle of the image object created by image, and the matrices X and
Y are the same:

h = image(X); colormap(map)

Y = get(h,'CData');

The dimensionality of the CData array controls whether the image displays using
colormap colors or as an RGB image. If the CData array is two-dimensional, the image
is either an indexed image or an intensity image; in either case, the image is displayed
using colormap colors. If, on the other hand, the CData array is m-by-n-by-3, it displays
as a truecolor image, ignoring the colormap colors.

Image CDataMapping

The CDataMapping property controls whether an image is indexed or intensity.
To display an indexed image set the CDataMapping property to 'direct', so that

6 Displaying Bit-Mapped Images

6-28

the values of the CData array are used directly as indices into the figure's colormap.
When the image command is used with a single input argument, it sets the value of
CDataMapping to 'direct':

h = image(X); colormap(map)

get(h,'CDataMapping')

ans =

direct

Intensity images are displayed by setting the CDataMapping property to 'scaled'. In
this case, the CData values are linearly scaled to form colormap indices. The axes CLim
property controls the scale factors. The imagesc function creates an image object whose
CDataMapping property is set to 'scaled', and it adjusts the CLim property of the
parent axes. For example:

h = imagesc(I,[0 1]); colormap(map)

get(h,'CDataMapping')

ans =

scaled

get(gca,'CLim')

ans =

[0 1]

XData and YData

The XData and YData properties control the coordinate system of the image. For an m-
by-n image, the default XData is [1 n] and the default YData is [1 m]. These settings
imply the following:

• The left column of the image has an x-coordinate of 1.
• The right column of the image has an x-coordinate of n.
• The top row of the image has a y-coordinate of 1.
• The bottom row of the image has a y-coordinate of m.

Coordinate System for Images

Use Default Coordinate System

 The Image Object and Its Properties

6-29

Display an image using the default coordinate system. Use colors from the colorcube
map.

C = [1 2 3 4; 5 6 7 8; 9 10 11 12];

im = image(C);

colormap(colorcube)

Specify Coordinate System

Display an image and specify the coordinate system. Use colors from the colorcube
map.

C = [1 2 3 4; 5 6 7 8; 9 10 11 12];

6 Displaying Bit-Mapped Images

6-30

x = [-1 2];

y = [2 4];

figure

image(x,y,C)

colormap(colorcube)

Add Text to Image Data

This example shows how to use array indexing to rasterize text strings into an existing
image.

Draw the text in an axes using the text function. Then, capture the text from the screen
using getframe and close the figure.

 The Image Object and Its Properties

6-31

fig = figure;

t = text(.05,.1,'Mandrill Face','FontSize',20,'FontWeight','bold');

F = getframe(gca,[10 10 200 200]);

close(fig)

Select any plane of the resulting RGB image returned by getframe. Find the pixels that
are black (black is 0) and convert their subscripts to indexes using sub2ind. Use these
subscripts to "paint" the text into the image contained in the mandrill MAT-file. Use
the size of that image, plus the row and column locations of the text to determine the
locations in the new image. Index into new image, replacing pixels.

c = F.cdata(:,:,1);

[i,j] = find(c==0);

load mandrill

ind = sub2ind(size(X),i,j);

X(ind) = uint8(255);

Display the new image using the bone colormap.

imagesc(X)

colormap bone

6 Displaying Bit-Mapped Images

6-32

Additional Techniques for Fast Image Updating

To increase the rate at which the CData property of an image object updates, optimize
CData and set some related figure and axes properties:

• Use the smallest data type possible. Using a uint8 data type for your image will be
faster than using a double data type.

Part of the process of setting the image's CData property includes copying the matrix
for the image's use. The overall size of the matrix is dependent on the size of its
individual elements. Using smaller individual elements (i.e., a smaller data type)
decreases matrix size, and reduces the amount of time needed to copy the matrix.

• Use the smallest acceptable matrix.

 The Image Object and Its Properties

6-33

If the speed at which the image is displayed is your highest priority, you may need to
compromise on the size and quality of the image. Again, decreasing the size reduces
the time needed to copy the matrix.

• Make the axes exactly the same size (in pixels) as the CData matrix.

Maintaining a one-to-one correspondence between the data and the onscreen pixels
eliminates the need for interpolation. For example:

set(gca,'Units','pixels')

pos = get(gca,'Position')

width = pos(3);

height = pos(4);

When the size of your CData exactly equals [width height], each element of the
array corresponds directly to a pixel. Otherwise, the values in the CData array must
be interpolated so the image fits the axes at their current size.

• Set the limit mode properties (XLimMode and YLimMode) of your axes to manual.

If they are set to auto, then every time an object (such as an image, line, patch, etc.)
changes some aspect of its data, the axes must recalculate its related properties. For
example, if you specify

image(firstimage);

set(gca, 'xlimmode','manual',...

'ylimmode','manual',...

'zlimmode','manual',...

'climmode','manual',...

'alimmode','manual');

the axes do not recalculate any of the limit values before redrawing the image.
• Consider using a movie object if the main point of your task is to simply display a

series of images onscreen.

The MATLAB movie object utilizes underlying system graphics resources directly,
instead of executing MATLAB object code. This is faster than repeatedly setting an
image's CData property, as described earlier.

6 Displaying Bit-Mapped Images

6-34

Printing Images

When you set the axes Position to [0 0 1 1] so that it fills the entire figure, the
aspect ratio is not preserved when you print because MATLAB printing software adjusts
the figure size when printing according to the figure's PaperPosition property. To
preserve the image aspect ratio when printing, set the figure's PaperPositionMode to
'auto' from the command line.

set(gcf,'PaperPositionMode','auto')

print

When PaperPositionMode is set to 'auto', the width and height of the printed
figure are determined by the figure's dimensions on the screen, and the figure
position is adjusted to center the figure on the page. If you want the default value of
PaperPositionMode to be 'auto', enter this line in your startup.m file.

set(groot,'defaultFigurePaperPositionMode','auto')

Printed images may not always be the same size as they are on your monitor. The size
depends on accurately specifying the numbers of pixels per inch that you monitor is
displaying.

To specify the pixels-per-inch on your display, do the following (in Microsoft Windows):

1 Go into your Display Properties by right-clicking on an empty space on your desktop
and choose Properties.

2 Click the Settings pane.
3 Click the Advanced button and choose the General pane.
4 Switch DPI setting to Custom setting and hold a real ruler up to the picture of the

ruler on the screen and drag until they match.

Until you do this, neither Windows software nor any other can determine how big images
on the screen are, and printed images cannot match the size.

On the Macintosh platform, pixels per inch is hard-coded to 72.

 Convert Image Graphic or Data Type

6-35

Convert Image Graphic or Data Type

Converting between data types changes the interpretation of the image data. If you want
the resulting array to be interpreted properly as image data, rescale or offset the data
when you convert it. (See the earlier sections “Image Types” on page 6-5 and “Indexed
Images” on page 6-10 for more information about offsets.)

For certain operations, it is helpful to convert an image to a different image type. For
example, to filter a color image that is stored as an indexed image, first convert it to RGB
format. To do this efficiently, use the ind2rgb function. When you apply the filter to
the RGB image, the intensity values in the image are filtered, as is appropriate. If you
attempt to filter the indexed image, the filter is applied to the indices in the indexed
image matrix, and the results may not be meaningful.

You can also perform certain conversions just using MATLAB syntax. For example, to
convert a grayscale image to RGB, concatenate three copies of the original matrix along
the third dimension:

RGB = cat(3,I,I,I);

The resulting RGB image has identical matrices for the red, green, and blue planes, so
the image appears as shades of gray.

Changing the graphics format of an image, perhaps for compatibility with another
software product, is very straightforward. For example, to convert an image from a BMP
to a PNG, load the BMP using imread, set the data type to uint8, uint16, or double,
and then save the image using imwrite, with 'PNG' specified as your target format. See
imread and imwrite for the specifics of which bit depths are supported for the different
graphics formats, and for how to specify the format type when writing an image to file.

6-36

7

Printing and Saving

• “Overview of Printing and Exporting” on page 7-2
• “Bitmap vs. Vector Formats” on page 7-8
• “How to Print or Export” on page 7-10
• “Printing and Exporting Use Cases” on page 7-30
• “Change Figure Settings” on page 7-37
• “Troubleshooting” on page 7-65
• “Saving Figures” on page 7-75

7 Printing and Saving

7-2

Overview of Printing and Exporting

In this section...

“Print and Export Operations” on page 7-2
“Graphical User Interfaces” on page 7-2
“Command Line Interface” on page 7-3
“Specifying Parameters and Options” on page 7-4
“Default Settings and How to Change Them” on page 7-5

Print and Export Operations

There are four basic operations that you can perform in printing or transferring figures
you've created with MATLAB graphics to specific file formats for other applications to
use.

Operation Description

Print Send a figure from the screen directly to the printer.
Print to File Write a figure to a PostScript® file to be printed later.
Export to File Export a figure in graphics format to a file, so that you can import

it into an application.
Export to Clipboard Copy a figure to the Microsoft Windows clipboard, so that you can

paste it into an application.

Graphical User Interfaces

In addition to typing MATLAB commands, you can use interactive tools for either
Microsoft Windows or UNIX® to print and export graphics. The table below lists the GUIs
available for doing this and explains how to open them from figure windows.

Dialog Box How to Open Description

Print (Windows and UNIX) File > Print or printdlg
function

Send figure to the printer, select
the printer, print to file, and
several other options

 Overview of Printing and Exporting

7-3

Dialog Box How to Open Description

Print Preview File > Print Preview or
printpreview function

View and adjust the final output

Export File > Export Export the figure in graphics
format to a file

Copy Options Edit > Copy Options Set format, figure size, and
background color for Copy to
Clipboard

Figure Copy Template File > Preferences Change text, line, axes, and UI
control properties

You can open the Print and Print Preview dialog boxes from a MATLAB file or from the
command line with the printdlg and printpreview functions.

Command Line Interface

You can print a MATLAB figure from the command line or from a MATLAB file. Use the
print function to specify the output format and start the print or export operation.

Note: Printed output from MATLAB commands and Print Previews of it are not
guaranteed to duplicate the look of figures on your display screen in every detail. Many
factors, including the complexity of the figure, available fonts, and whether a native
printer driver or a MATLAB built-in driver to is used, affect the final output and can
cause printed output to differ from what you see on your screen.

Printing and Exporting with print

The print function performs any of the four actions shown in the table below. You
control what action is taken, depending on the presence or absence of certain arguments.

Action Print Command

Print a figure to a printer print

Print a figure to a file for later printing print filename
Copy a figure in graphics format to the
clipboard on Microsoft Windows systems

print -dfileformat

7 Printing and Saving

7-4

Action Print Command

Export a figure to a graphics format
file that you can later import into an
application

print -dfileformat filename

You can also include optional arguments with the print command. For example, to
export Figure No. 2 to file spline2d.eps, with 600 dpi resolution, and using the EPS
color graphics format, use

print -f2 -r600 -depsc spline2d

The functional form of this command is

print('-f2', '-r600', '-depsc', 'spline2d');

Printing on UNIX Platforms without a Display

If you run with the PostScript -nodisplay startup option, or run without the DISPLAY
environment variable set, you can use most print options that apply to the UNIX
platform, but some restrictions apply. For example, in nodisplay mode uicontrols do not
print; thus you cannot print a GUI if you run in this mode.

See “Printing and Exporting Without a Display” in the documentation for the print
function for details.

Specifying Parameters and Options

The table below lists parameters you can modify for the figure to be printed or exported.
To change one of these parameters, use the Print Preview or the UNIX Print dialog box,
or use the set or print function.

See “Change Figure Settings” on page 7-37 for more detailed instructions.

Parameter Description

Figure size Set size of the figure on printed page
Figure position Set position of figure on printed page
Paper size Select printer paper, specified by dimension or type
Paper orientation Specify way figure is oriented on page

 Overview of Printing and Exporting

7-5

Parameter Description

Position mode Specify figure position yourself or let it be determined
automatically

Graphics format Select format for exported data (e.g., EPS, JPEG)
Resolution Specify how finely your figure is to be sampled
Renderer Select method (algorithm) for drawing graphics
Renderer mode Specify the renderer yourself or automatically determine

which renderer to use based on the figure's contents
Axes tick marks Keep axes tick marks and limits as shown or automatically

adjust them depending on figure size
Background color Keep background color as shown on screen or force it to

white
Line and text color Keep line and text objects as shown on screen or print

them in black and white
UI controls Show or hide all user interface controls in figure
Bounding box Leave space between outermost objects in plot and edges

of its background area
CMYK Automatically convert RGB values to CMYK values
Character set encoding Select character set for PostScript printers

Default Settings and How to Change Them

If you have not changed the default print and export settings, MATLAB prints or exports
the figure as follows:

• 8-by-6 inches with no window frame
• Centered, in portrait format, on 8.5-by-11 inch paper if available
• Using white background color for the figure and axes
• Scaling ticks and limits of the axes to accommodate the printed size

Setting Defaults for a Figure

In general, to change the property settings for a specific figure, follow the instructions
given in the section “Change Figure Settings” on page 7-37.

7 Printing and Saving

7-6

Any settings you change with the Print Preview and Print dialog boxes or with the set
function are saved with the figure and affect each printing of the figure until you change
the settings again.

The settings you change with the Figure Copy Template Preferences and Copy
Options Preferences panels alter the figure as it is displayed on the screen.

Setting Defaults for the Session

You can set the session defaults for figure properties. Set the session default for a
property using the syntax

set(groot,'defaultFigurepropertyname','value')

where propertyname is one of the named figure properties. This example sets the paper
orientation for all subsequent print operations in the current MATLAB session.

set(groot,'defaultFigurePaperOrientation','landscape')

The Figure Properties properties page contains a complete list of the properties.

To see what default properties you can set that will be applied to all subsequent figures
in the same MATLAB session, type

set(groot,'default')

To see their current settings, type

get(groot,'default')

Setting Defaults Across Sessions

You can set the session-to-session defaults for figure properties, the print driver, and the
print function.

Print Device and Print Command

Set the default print driver and the default print command in your printopt.m file.
This file contains instructions for changing these settings and for displaying the current
defaults. Open printopt.m in your editor by typing the command

edit printopt

Scroll down about 40 lines until you come to this comment line:

%---> Put your own changes to the defaults here (if needed)

 Overview of Printing and Exporting

7-7

Add your changes after that line. For example, to change the default driver, first find the
line that sets dev, and then replace the text string with an appropriate value. So, to set
the default driver to HP® LaserJet III, modify the line to read

dev = '-dljet3';

For the full list of values for dev, see the Drivers section of the print reference page.

Note If you set dev to be a graphics format, such as -djpeg, the figure is exported to
that type of file rather than being printed.

Figure Properties

Set the session-to-session default for a property by including commands like the following
in your startup.m file:

set(groot,'defaultFigurepropertyname','value')

where propertyname is one of the named figure properties. For example,

set(groot,'defaultFigureInvertHardcopy','off')

keeps the figure background in the screen color.

This is the same command you use to change a session default, except by adding it to
your startup.m file, it executes automatically every time you launch MATLAB.

Options you specify in arguments to the print command override properties set using
MATLAB commands or the Print Preview dialog box, which in turn override any
MATLAB default settings specified in printopt.m or startup.m.

Note: To export to vector graphics formats, ensure the figure RendererMode property is
set to auto.

../ref/print.html#devices_target

7 Printing and Saving

7-8

Bitmap vs. Vector Formats

In this section...

“Choosing a Format” on page 7-8
“How Renderer Affects Format” on page 7-9
“Controlling Graphics Output” on page 7-9

Choosing a Format

There are two kinds of graphics file formats that you can create from MATLAB figures:

• Bitmaps images — Screen pixels captured in a file.
• Vector graphics — Commands to drawn individual objects.

The kind of file you use depends on how you want to present the exported graphics and if
you want to modify the graphics in an external program.

Bitmap Format

• Widely used by Web browsers and other applications that display graphics.
• Resolution and output dimensions determine size
• Scaling can reduce quality
• Cannot modify individual graphics objects (such as lines and text) from other graphics

applications

Vector Format

• Graphics applications can modify graphics object characteristics (such as color, line
style, and text font)

• Scalable size
• Slower to render and can result in larger files
• Might not produce correct 3-D arrangement of objects in certain cases

For a list of supported formats, see Graphics File Formats in the print command page.

 Bitmap vs. Vector Formats

7-9

How Renderer Affects Format

The renderer is the part of MATLAB that determines how to display graphics on
the screen, send graphics to a printer, or write graphics to a file. MATLAB uses two
rendering methods:

• Painter’s — Used for vector format output (PDF, SVG, PostScript, EPS, metafile) and
whenever you specify Painter’s as the screen renderer by setting the figure Renderer
property.

• OpenGL® — Produces a bitmap even with vector formats. OpenGL is the default
screen renderer and is used for printing except when you specify a vector format.

MATLAB attempts to use the Painter’s renderer for exporting to vector formats if the
figure RendererMode property is set to auto However, MATLAB does not use the
Painter’s renderer in cases in which you:

• Explicitly specify OpenGL as the screen renderer, which sets the figure
RendererMode property to manual.

• Override the figure Renderer property from the Export Setup dialog.
• Specify a renderer with the print command.

Controlling Graphics Output

In most cases, MATLAB uses the appropriate renderer to produce the output format that
you request.

However, if a figure contains a very large number of graphics objects that need to be
arranged by 3-D depth, MATLAB might use OpenGL and create a bitmap in the output
format. In these cases, a vector format like EPS or PDF actually contains a bitmap,
which might limit the extend to which you can edit the image in other applications.

If you want to ensure that your output format is a true vector graphic file, then specify
the renderer with the Export Setup dialog or the print command.

For example, this command always generates a vector format:

print -deps -painters myVectorFile

In some cases, exporting a file with the -painters option can cause longer rendering
times and, in rare cases, might produce graphics that are not accurate with regard to 3-D
arrangement of the graphics objects.

7 Printing and Saving

7-10

How to Print or Export

In this section...

“Using Print Preview” on page 7-10
“Printing a Figure” on page 7-13
“Printing to a File” on page 7-15
“Exporting to a File” on page 7-17
“Exporting to the Windows or Macintosh Clipboard” on page 7-25

Using Print Preview

Before you print or export a figure, preview the image by selecting Print Preview from
the figure window's File menu. If necessary, you can use the set function to adjust
specific characteristics of the printed or exported figure. Adjustments that you make in
the Print Preview dialog also set figure properties; these changes can affect the output
you get should you print the figure later with the print command. See “Change Figure
Settings” on page 7-37 for details.

 How to Print or Export

7-11

Adding a Header to the Printed Page

You can add a header to the page you are about to print by clicking the Lines/Text tab
at the top of the Print Preview dialog box. At the bottom of that panel are the Header
controls, as shown here:

7 Printing and Saving

7-12

The print header includes any text you want to appear at the top of the printed page.
It can also include the current date. In the Header Text edit box, enter the text of the
header. Under Date Type, select from a number of possible formats with which to
display the current date and/or time. The default is to include no date. Click the Font
button to change the font, font style, font size, or script type for the header text and date
format. If you don't see the header as you specified it, click the Refresh button over
the preview pane. A page containing a header plus date in bold italics is shown in the
preview below:

 How to Print or Export

7-13

Click Print to open the standard print dialog box to print the page. Click Close to close
the dialog box and apply these settings to your figure.

Note: The print preview header appears only when printing directly to a printer, not
when printing to a file.

Printing a Figure

This section tells you how to print your figure to a printer:

• “Printing with the Print GUI on Microsoft Windows” on page 7-14
• “Printing with the Print GUI on UNIX Platforms” on page 7-14

7 Printing and Saving

7-14

Printing with the Print GUI on Microsoft Windows

MATLAB printing on Windows platforms uses the standard Windows Print dialog box,
which most Windows software products share. To open the Windows Print dialog box,
select Print from the figure window's File menu or click the Print button in the Print
Preview dialog box.

• To print a figure, first select a printer from the list box, then click OK.
• To save it to a file, click the Print to file check box, click OK, and when the Print

to File window appears, enter the filename you want to save the figure to. The file is
written to your current working folder.

Settings you can change in the Windows Print dialog box are as follows:

Properties

To make changes to settings specific to a printer, click the Properties button. This opens
the Windows Document Properties window.

Print range

You can only select All in this panel. The selection does not affect your printed output.

Copies

Enter the number of copies you want to print.

You can also open the Print dialog programmatically via the printdlg function.

Printing with the Print GUI on UNIX Platforms

MATLAB printing on UNIX platforms has a Print dialog box containing three tabs. To
open the Print dialog box, select Print from the figure window's File menu. It opens
showing the General tab's contents.

To print a figure, click the Name button under Print Service and select a printer from
the list box.

Note: Printers accessed from the Print dialog are assumed to be PostScript-enabled. If
you want to print to a non-PostScript device, you will need to use File > Save As and
specify the Save as type or issue a print command specifying the appropriate driver
with the -d flag.

 How to Print or Export

7-15

Set paper characteristics and margins with the Page Setup tab on the Print dialog. You
might want to use the Print Preview dialog instead, however, as it allows you to do the
same things and gives you visual feedback at the same time. For details, see “Using Print
Preview” on page 7-10.

The Appearance options include duplex and tumble printing, whether a banner page
should precede the printed page, whether to print in color, and what quality of printing
to use. You can also use Print Preview to control color.
Printing in Color

Depending on the capabilities of the printer you are using, you can print in black and
white, grayscale, or color by selecting the appropriate button in the Color Scale panel of
the Print Preview Color tab. You can also choose a background color that is the same or
different from the figure's color.
Figure Size and Position on Printed Page

If you want the printed plot to have the same size as it does on your screen, select Auto
(Actual Size, Centered) on the Layout tab. If you want the printed output to have a
specific size, select Use manual size and position.

See “Setting the Figure Size and Position” on page 7-41 for more information.
Axes Limits and Ticks

To force the same number of ticks and the same limit values for the axes as are used on
the screen to be printed, select Keep screen limits and ticks on the Advanced tab
of the Print Preview dialog box. To automatically scale the limits and ticks of the axes
based on the size of the printed figure, select Recompute limits and ticks.

See “Setting the Axes Ticks and Limits” on page 7-52 for more information.

Printing to a File

Instead of sending your figure to the printer right now, you have the option of “printing”
it to a file, and then sending the file to the printer later on. You can also append
additional figures to the same file using the print command.

When you print to a file, the file name must have fewer than 128 characters, including
path name. When you print to a file in your current folder, the filename must have fewer
than 126 characters, because MATLAB places './' or '.\'' at the beginning of the
filename when referring to it.

7 Printing and Saving

7-16

This section tells you how to save your figure to a file:

• “Printing to a File with the Print GUI on Windows Platforms” on page 7-16
• “Printing to a File with the Print GUI on UNIX Platforms” on page 7-16
• “Printing to a File Using MATLAB Commands” on page 7-16

Printing to a File with the Print GUI on Windows Platforms

1 To open the Print dialog box, select Print from the figure window's File menu.
2 Select the check box labeled Print to file, and click the OK button.
3 The Print to file dialog box appears, allowing you to specify the output folder and

filename.

Printing to a File with the Print GUI on UNIX Platforms

1 To open the Print dialog box, select Print from the figure window's File menu.
2 Select the radio button labeled File, and either fill in or browse for the folder and

filename.

Printing to a File Using MATLAB Commands

To print the figure to a PostScript file, type

print filename

If you don't specify the filename extension, MATLAB uses an extension that is
appropriate for the print driver being used.

You can also include an -options argument when printing to a file. For example, to
append the current figure to an existing file, type

print -append filename

The only way to append to a file is by using the print function. There is no dialog box
that enables you to do this.

Note If you print a figure to a file, the file can only be printed and cannot be imported
into another application. If you want to create a figure file that you can import into an
application, see the next section, “Exporting to a File”

Appending Additional Figures to a File

 How to Print or Export

7-17

Once you have printed one figure to a PostScript file, you can append other figures to
that same file using the -append option of the print function. You can only append
using the print function and full PostScript (the -dps, -dpsc, -dps2, and -dpsc2
drivers).

Exporting to a File

Export a figure in a graphics format to a file if you want to import it into another
application, such as a word processor. You can export to a file from the Windows or UNIX
Export Setup dialog box or from the command line.

This section tells you how to export your figure to a file:

• “Using the Export Setup GUI” on page 7-17
• “Exporting Using MATLAB Commands” on page 7-23
• “Importing MATLAB Graphics into Other Applications” on page 7-24

Note: When you export to a file, the file name must have fewer than 128 characters,
including path name. When you print to a file in your current folder, the filename must
have fewer than 126 characters, because MATLAB places './' or '.\'' at the beginning
of the filename when referring to it.

Using the Export Setup GUI

The Export Setup GUI appears when you select Export Setup from the File menu
of a figure window. This GUI has four dialog boxes that enable you to adjust the size,
rendering, font, and line appearance of your figure prior to exporting it. You select each
of these dialog boxes by clicking Size, Rendering, Fonts, or Lines from theProperties
list. For a description of each dialog box, see

• “Adjusting the Figure Size” on page 7-17
• “Changing the Rendering” on page 7-18
• “Changing Font Characteristics” on page 7-20
• “Changing Line Characteristics” on page 7-22

Adjusting the Figure Size

Click Size in the Export Setup dialog box to display this dialog box.

7 Printing and Saving

7-18

The Size dialog box modifies the size of the figure as it will appear when imported from
the export file into your application. If you leave the Width and Height settings on
auto, the figure remains the same size as it appears on your screen. You can change the
size of the figure by entering new values in the Width and Height text boxes and then
clicking Apply to Figure. To go back to the original settings, click Restore Figure.

To save any settings that you change, or to load settings that you used earlier, see
“Saving and Loading Settings” on page 7-23.

Changing the Rendering

Click Rendering in the Export Setup dialog box to display this dialog box.

 How to Print or Export

7-19

You can change the settings in this dialog box as follows:

Colorspace

Use the drop-down list to select a colorspace:

• Black and white — Lines and text in black, all other objects in grayscale
• Grayscale — All objects in grayscale
• RGB color — Color using the RGB colorspace
• CMYK color — Color using the CMYK colorspace

Custom Color

Click the check box and enter a color to be used for the figure background. Valid entries
are

• white, yellow, magenta, red, cyan, green, blue, or black
• Abbreviated name for the same colors — w, y, m, r, c, g, b, k
• Three-element RGB value — See the help for colorspec for valid values. Examples:

[1 0 1] is magenta. [0 .5 .4] is a dark shade of green.

7 Printing and Saving

7-20

Custom Renderer

Click the check box and select a renderer from the drop-down list:

• painters (vector format) — Select painters when exporting to a vector
format.

• OpenGL (bitmap format) — Select OpenGL when exporting to a bit-mapped
format.

Resolution

You can select one of the following from the drop-down list:

• Screen — The same resolution as used on your screen display
• A specific numeric setting — 150, 300, or 600 dpi
• auto — UNIX selects a suitable setting

Keep axis limits

Click the check box to keep axis tick marks and limits as shown. If unchecked,
automatically adjust depending on figure size.

Show uicontrols

Click the check box to show all user interface controls in the figure. If unchecked, hide
user interface controls.

Changing Font Characteristics

Click Fonts in the Export Setup dialog box to display this dialog box.

 How to Print or Export

7-21

You can change the settings in this dialog box as follows:
Custom Size

Click the check box and use the radio buttons to select a relative or absolute font size for
text in the figure.

• Scale font by N % — Increases or decreases the size of all fonts by a relative
amount, N percent. Enter the word auto to automatically select the appropriate font
size.

• With minimum of N points — You can specify a minimum font size when scaling
the font by a percentage.

• Use fixed font size N points — Sets the size of all fonts to an absolute value, N
points.

Custom Name

Click the check box and use the drop-down list to select a font name from those offered in
the drop-down list.
Custom Weight

Click the check box and use the drop-down list to select the weight or thickness to be
applied to text in the figure. Choose from normal, light, demi, or bold.

7 Printing and Saving

7-22

Custom Angle

Click the check box and use the drop-down list to select the angle to be applied to text in
the figure. Choose from normal, italic, or oblique.

Changing Line Characteristics

Click Lines in the Export Setup dialog box to display this dialog box.

You can change the settings in this dialog box as follows:

Custom width

Click the check box and use the radio buttons to select a relative or absolute line size for
the figure.

• Scale line width by N % — Increases or decreases the width of all lines by a relative
amount, N percent. Enter the word auto to automatically select the appropriate line
width.

• With minimum of N points — Specify a minimum line width when scaling the font
by a percentage.

• Use fixed line width N points — Sets the width of all lines to an absolute value, N
points.

 How to Print or Export

7-23

Convert solid lines to cycle through line styles

When colored graphics are imported into an application that does not support color, lines
that could formerly be distinguished by unique color are likely to appear the same. For
example, a red line that shows an input level and a blue line showing output both appear
as black when imported into an application that does not support colored graphics.

Clicking this check box causes exported lines to have different line styles, such as solid,
dotted, or dashed lines rather than differentiating between lines based on color.

Saving and Loading Settings

If you think you might use these export settings at another time, you can save them now
and reload them later. At the bottom of each Export Setup dialog box, there is a panel
labeled Export Styles. To save your current export styles, type a name into the Save as
style named text box, and then click Save.

If you then click the Load settings from drop-down list, the name of the style you just
saved appears among the choices of export styles you can load. To load a style, select one
of the choices from this list and then click Load.

To delete any style you no longer have use for, select that style name from the Delete a
style drop-down list and click Delete.

Exporting the Figure

When you finish setting the export style for your figure, you can export the figure to a
file by clicking the Export button on the right side of any of the four Export Setup dialog
boxes. As new window labeled Save As opens.

Select a folder to save the file in from the Save in list at the top. Select a file type for
your file from the Save as type drop-down list at the bottom, and then enter a file name
in the File name text box. Click the Save button to export the file.

Exporting Using MATLAB Commands

Use the print function to print from the MATLAB command line or from a program. See
“Printing and Exporting with print” on page 7-3 for basic information on printing from
the command line.

To export the current or most recently active figure, type

print -dfileformat filename

7 Printing and Saving

7-24

where fileformat is a supported graphics format and filename is the name you want
to give to the export file. MATLAB selects the filename extension, if you don't specify it.

You can also specify a number of options with the print function. These are shown in
the Printing Options table on the print reference page.

For example, to export Figure No. 2 to file spline2d.eps, with 600 dpi resolution and
using the EPS color graphics format, type

print -f2 -r600 -depsc spline2d

Importing MATLAB Graphics into Other Applications

You can include MATLAB graphics in a wide variety of applications for word processing,
slide preparation, modification by a graphics program, presentation on the Internet, and
so on. In general, the process is the same for all applications:

1 Use MATLAB graphics to create the figure you want to import into another
application.

2 Export the MATLAB figure to one of the supported graphics file formats, selecting
a format that is both appropriate for the type of figure and supported by the target
application.

3 Use the import features of the target application to import the graphics file.

Edit Before You Export

Vector graphics may be fully editable in a few high-end applications, but most
applications do not support editing beyond simple resizing. Bitmaps cannot be edited
with quality results unless you use a software package devoted to image processing. In
general, you should try to make all the necessary settings while your figure is still in
MATLAB.

Importing into Microsoft Applications

To import your exported figure into a Microsoft application, select Picture from the
Insert menu. Then select From File and navigate to your exported file. If you use the
clipboard to perform your export operations, you can take advantage of the recommended
MATLAB settings for Microsoft Word and PowerPoint®.

Example — Importing an EPS Graphic into LaTeX

This example shows how to import an EPS file named peaks.eps into LaTeX.

../ref/print.html#options_target

 How to Print or Export

7-25

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\begin{figure}[h]

\centerline{\includegraphics[height=10cm]{peaks.eps}}

\caption{Surface Plot of Peaks}

\end{figure}

\end{document}

EPS graphics can be edited after being imported to LaTeX. For example, you can specify
the height in any LaTeX-compatible dimension. To set the height to 3.5 inches, use the
command

height=3.5in

You can use the angle function to rotate the graph. For example, to rotate the graph 90
degrees, add

angle=90

to the same line of code that sets the height, i.e., [height=10cm,angle=90].

Exporting to the Windows or Macintosh Clipboard

You can export a figure to the Windows or Macintosh clipboard. The formats used are
discussed below.

• “Windows Clipboard Format” on page 7-25
• “Macintosh Clipboard Format” on page 7-26
• “Exporting to the Clipboard Using GUIs” on page 7-26
• “Exporting to the Clipboard Using MATLAB Commands” on page 7-28

Windows Clipboard Format

You can copy graphic data to the system clipboard data on Windows in either of two
graphics formats: EMF color vector or a bitmap image.

7 Printing and Saving

7-26

By default, the graphics format is automatically selected, based on the rendering method
used to display the figure. For figures rendered with OpenGL, MATLAB uses the bitmap
format. For figures rendered with Painter's, the EMF format is used.

To override the automatic selection, specify the format of your choice using either the
Windows Copy Options Preferences dialog, or the -d switch in the print command.

Macintosh Clipboard Format

On Macintosh platforms (using Java® figures, the default), MATLAB copies figures to
other applications in a high-resolution PDF format. If the figure contains uicontrols, then
MATLAB uses a TIFF format instead. Use Edit > Copy Figure to copy to the clipboard,
not the print command. The entire figure window is captured.

Exporting to the Clipboard Using GUIs

Before you export the figure to the clipboard, you can use the Copy Options Preferences
dialog box to select a nondefault graphics format, or to adjust certain figure settings.
These settings become the new defaults for all figures exported to the clipboard.

Note When exporting to the clipboard in Windows metafile format (print -dmeta), the
settings from the figure Copy Options Preferences template are ignored.

To open the Windows only Copy Options Preferences dialog box, select Copy Options
from the figure window's Edit menu. Any changes you make with this dialog box affect
only the clipboard copy of the figure; they do not affect the way the figure looks on the
screen.

 How to Print or Export

7-27

Settings you can change in the Copy Options Preferences dialog box are as follows:

Clipboard format

• To copy the figure in EMF color vector format, select Metafile. This option places a
metafile on the system clipboard.

• The Preserve information option selects the format based on the current figure
renderer. If the figure renderer is

• painters — clipboard format is metafile
• opengl — clipboard format is a bitmap image

• To use a bitmap format, select Bitmap.

7 Printing and Saving

7-28

Note: On Macintosh platforms, the Copy Options dialog box does not have the
Clipboard format options.

Figure background color

To keep the background color the same as it appears on the screen, select Use figure
color. To make the background white, select Force white background. For a
background that is transparent, for example, a slide background to frame the axes part of
a figure, select Transparent background.

Size

Select Match figure screen size to copy the figure as it appears on the screen, or
leave it unselected to use the Width and height options in the Export Setup dialog to
determine its size.

1 Open the Copy Options Preferences dialog box if you need to make any changes to
those preferences used in copying to the clipboard.

2 Click OK to see the new preferences. These will be used for all future figures
exported to the clipboard.

3 Select Copy Figure from the figure window's Edit menu to copy the figure to the
clipboard.

Exporting to the Clipboard Using MATLAB Commands

Export to the clipboard on Windows using the print function with a graphics format,
but no filename. Use one of the following clipboard formats: -dbitmap, -dmeta, or
-dpdf. These switches create a bitmap image, an enhanced metafile (EMF), or PDF
output.

For example, on Windows:

print -dbitmap -clipboard

print -dmeta -clipboard

print -dpdf -clipboard

On the Macintosh:

print -dbitmap -clipboard

print -dpdf -clipboard

On Unix:

 How to Print or Export

7-29

print -dbitmap -clipboard

print -dpdf -clipboard

Note When printing, the print -d option specifies a printer driver. When exporting, the
print -d option specifies a graphics format.

7 Printing and Saving

7-30

Printing and Exporting Use Cases

In this section...

“Printing a Figure at Screen Size” on page 7-30
“Printing with a Specific Paper Size” on page 7-31
“Printing a Centered Figure” on page 7-31
“Exporting in a Specific Graphics Format” on page 7-32
“PostScript and PDF Font Translations” on page 7-33
“Exporting in EPS Format with a TIFF Preview” on page 7-34
“Exporting a Figure to the Clipboard” on page 7-34

Printing a Figure at Screen Size

By default, your figure prints at 8-by-6 inches. This size includes the area delimited by
the background. This example shows how to print or export your figure the same size it is
displayed on your screen.

Using the Graphical User Interface

1 Resize your figure window to the size you want it to be when printed.
2 Select Print Preview from the figure window's File menu, and select the Layout

tab.
3 In the Placement panel, select Auto (Actual Size, Centered).
4 Click Print in the upper right corner to print the figure.
5 The Print dialog box opens for you to print the figure.

Using MATLAB Commands

Set the PaperPositionMode property to auto before printing the figure.

set(gcf,'PaperPositionMode','auto');

print

If later you want to print the figure at its original size, set PaperPositionMode back to
'manual'.

 Printing and Exporting Use Cases

7-31

Printing with a Specific Paper Size

The MATLAB default paper size is 8.5-by-11 inches. This example shows how to change
the paper size to 8.5-by-14 inches by selecting a paper type (Legal).

Using the Graphical User Interface

1 Select Print Preview from the figure window's File menu, and select the Layout
tab.

2 Select the Legal paper type from the list in the Paper panel. The Width and
Height fields update to 8.5 and 14, respectively.

3 Make sure that Units is set to inches.
4 Click Print in the upper right corner to print the figure.
5 The Print dialog box opens for you to print the figure.

Using MATLAB Commands

Set the PaperUnits property to inches and the PaperType property to Legal.

set(gcf,'PaperUnits','inches');

set(gcf,'PaperType','Legal');

Alternatively, you can set the PaperSize property to the size of the paper, in the
specified units.

set(gcf,'PaperUnits','inches');

set(gcf,'PaperSize',[8.5 14]);

Printing a Centered Figure

This example sets the size of a figure to 5.5-by-3 inches and centers it on the paper.

Using the Graphical User Interface

1 Select Print Preview from the figure window's File menu, and select the Layout
tab.

2 Make sure Use manual size and position is selected.
3 Enter 5.5 in the Width field and 3 in the Height field.
4 Make sure that Units field is set to inches.
5 Click Center.
6 Click OK.
7 Click Print to open the Print dialog box and print the figure.

7 Printing and Saving

7-32

Using MATLAB Commands

1 Start by setting PaperUnits to inches.

set(gcf,'PaperUnits','inches')

2 Use PaperSize to return the size of the current paper.

papersize = get(gcf,'PaperSize')

papersize =

 8.5000 11.0000

3 Initialize variables to the desired width and height of the figure.

width = 5.5; % Initialize a variable for width.

height = 3; % Initialize a variable for height.

4 Calculate a left margin that centers the figure horizontally on the paper. Use the
first element of papersize (width of paper) for the calculation.

left = (papersize(1)-width)/2

left =

 1.5000

5 Calculate a bottom margin that centers the figure vertically on the paper. Use the
second element of papersize (height of paper) for the calculation.

bottom = (papersize(2)-height)/2

bottom =

 4

6 Set the figure size and print.

myfiguresize = [left,bottom,width,height];

set(gcf,'PaperPosition',myfiguresize);

print

Exporting in a Specific Graphics Format

Export a figure to a graphics-format file when you want to import it at a later time into
another application such as a word processor.

Using the Graphical User Interface

1 Select Save As from the figure window's File menu.
2 Use the Save in field to navigate to the folder in which you want to save your file.

 Printing and Exporting Use Cases

7-33

3 Select a graphics format from the Save as type list.
4 Enter a filename in the File name field. An appropriate file extension, based on the

format you chose, is displayed.
5 Click Save to export the figure.

Using MATLAB Commands

From the command line, you must specify the graphics format as an option. See the
print reference page for a complete list of graphics formats and their corresponding
option strings.

This example exports a figure to an EPS color file, myfigure.eps, in your current
folder.

print -depsc myfigure

This example exports Figure No. 2 at a resolution of 300 dpi to a 24-bit JPEG file,
myfigure.jpg.

print -djpeg -f2 -r300 myfigure

This example exports a figure at screen size to a 24-bit TIFF file, myfigure.tif.

set(gcf,'PaperPositionMode','auto') % Use screen size

print -dtiff myfigure

PostScript and PDF Font Translations

MATLAB translates certain fonts before printing or exporting to PostScript or PDF
formats. This table describes the translation:

This Font Replaced With

Arial Helvetica
Times New Roman Times
NewCenturySchoolbook Sans-Serif
Tahoma Helvetica
sans serif Sans-Serif
Any other font Courier

../ref/print.html#export_formats

7 Printing and Saving

7-34

Exporting in EPS Format with a TIFF Preview

Use the print function to export a figure in EPS format with a TIFF preview. When you
import the figure, the application can display the TIFF preview in the source document.
The preview is color if the exported figure is color, and black and white if the exported
figure is black and white.

This example exports a figure to an EPS color format file, myfigure.eps, and includes a
color TIFF preview.

print -depsc -tiff myfigure

This example exports a figure to an EPS black-and-white format file, myfigure.eps,
and includes a black-and-white TIFF preview.

print -deps -tiff myfigure

Exporting a Figure to the Clipboard

Export a figure to the clipboard in graphics format when you want to paste it into
another Windows or Macintosh application such as a word processor.

Using the Graphical User Interface

This example exports a figure to the clipboard in enhanced metafile (EMF) format.
Figure settings are chosen that would make the exported figure suitable for use in a
Microsoft Word or PowerPoint slide. Changing the settings modifies the figure displayed
on the screen.

1 Create a figure and add a title:

x = -pi:0.01:pi;

h = plot(x,sin(x));

title('Sine Plot');

2 Select Preferences from the figure File menu. Then select Figure Copy Template
from the Preferences dialog box.

3 In the Figure Copy Template Preferences panel, click the Presentations
button. The suggested settings for presentations include:

• Increased font size
• Bold font

 Printing and Exporting Use Cases

7-35

Note: In Macintosh®, the Figure Copy Template Preferences panel is not
displayed. For more information on how to export figures in Macintosh, see
“Exporting to the Windows or Macintosh Clipboard” on page 7-25.

4 In the Lines panel, change the Custom width to 4 points.
5 In the Uicontrols and axes panel, select Keep axes limits and tick spacing to

prevent tick marks and limits from possibly being rescaled when you export.
6 Click Apply to Figure. The changes appear in the figure window.

If you don't like the way your figure looks with the new settings, restore it to its
original settings by clicking the Restore Figure button.

7 In the left pane of the Preferences dialog box, expand the Figure Copy Template
topic. Select Copy Options.

8 In the Copy Options panel, select Metafile to export the figure in EMF format.
9 Check that Transparent background is selected. This choice makes the figure

background transparent and allows the slide background to frame the axes part of
the figure.

10 Clear the Match figure screen size check box so that you can use your own figure
size settings.

11 Click OK.
12 Select Export Setup from the figure window's File menu.
13 Select the Size properties, and set Width to 6 and Height to 4.5. Make sure that

Units are set to inches.
14 Click Close.

7 Printing and Saving

7-36

15 Select Copy Figure from the Edit menu. Your figure is now exported to the
clipboard and can be pasted into a Windows application. On Macintosh computers,
MATLAB exports the figure in the best format (bit-mapped or vector) based on the
figure content.

Using MATLAB Commands

Use the print function and one of two clipboard formats (-dmeta, -dbitmap) to export
a figure to the clipboard. Do not specify a filename.

This example exports a figure to the clipboard in enhanced metafile (EMF) format.

print -dmeta

This example exports a figure to the clipboard in bitmap (BMP) 8-bit color format.

print -dbitmap

 Change Figure Settings

7-37

Change Figure Settings

In this section...

“Parameters that Affect Printing” on page 7-37
“Selecting the Figure” on page 7-39
“Selecting the Printer” on page 7-39
“Setting the Figure Size and Position” on page 7-41
“Setting the Paper Size or Type” on page 7-44
“Setting the Paper Orientation” on page 7-46
“Selecting a Renderer” on page 7-48
“Setting the Resolution” on page 7-50
“Setting the Axes Ticks and Limits” on page 7-52
“Setting the Background Color” on page 7-54
“Setting Line and Text Characteristics” on page 7-55
“Setting the Line and Text Color” on page 7-58
“Specifying a Colorspace for Printing and Exporting” on page 7-61
“Excluding User Interface Controls from Printed Output” on page 7-63
“Producing Uncropped Figures” on page 7-64

Parameters that Affect Printing

The table below shows parameters that you can set before submitting your figure to the
printer.

The Parameter column lists all parameters that you can change.

The Default column shows the MATLAB default setting.

The Dialog Box column shows which dialog box to use to set that parameter. If you can
make this setting on only one platform, this is noted in parentheses: (W) for Windows,
and (U) for UNIX.

Some dialog boxes have tabs at the top to enable you to select a certain category. These
categories are denoted in the table below using the format <dialogbox>/<tabname>.

7 Printing and Saving

7-38

For example, Print Preview/Layout... in this column means to use the Print Preview
dialog box, selecting the Layout tab.

The print Command or set Property column shows how to set the parameter using the
MATLAB print or set function. When using print, the table shows the appropriate
command option (for example, print -loose). When using set, it shows the property
name to set along with the type of object (for example, (Line) for line objects).

Parameter Default Dialog Box print Command or set
Property

Select figure Last active window None print -fhandle

Select printer System default Print print -pprinter

Figure size 8-by-6 inches Print Preview/
Layout

PaperSize (Figure)
PaperUnits (Figure)

Position on page 0.25 in. from left, 2.5 in.
from bottom

Print Preview/
Layout

PaperPosition

(Figure) PaperUnits
(Figure)

Position mode Manual Print Preview/
Layout

PaperPositionMode

(Figure)
Paper type Letter Print Preview/

Layout
PaperType (Figure)

Paper orientation Portrait Print Preview/
Layout

PaperOrientation

(Figure)
Renderer Selected automatically Print Preview/

Advanced
print -painters |

-opengl

Renderer mode Auto Print Preview/
Advanced

RendererMode

(Figure)
Resolution Depends on driver or

graphics format
Print Preview/
Advanced

print -rresolution

Axes tick marks Recompute Print Preview/
Advanced

XTickMode, etc. (Axes)

Background color Force to white Print Preview/Color Color (Figure)
InvertHardCopy

(Figure)

 Change Figure Settings

7-39

Parameter Default Dialog Box print Command or set
Property

Font size As in the figure Print Preview/Lines/
Text

FontSize (Text)

Bold font Regular font Print Preview/Lines/
Text

FontWeight (Text)

Line width As in the figure Print Preview/Lines/
Text

LineWidth (Line)

Line style Black or white Figure Copy
Template

LineStyle (Line)

Line and text color Black and white Print Preview/Lines/
Text

Color (Line, Text)

CMYK color RGB color Print Preview/Color
(U)

print -cmyk

UI controls Printed Print Preview/
Advanced

print -noui

Bounding box Tight N/A print -loose

“Copy background” Transparent Copy Options (W) See “Background color”
“Copy size” Same as screen size Copy Options (W) See “Figure Size”

Selecting the Figure

By default, the current figure prints. If you have more than one figure open, the current
figure is the last one that was active. To make a different figure active, click it to bring it
to the foreground.

Using MATLAB Commands

Specify a figure using the command

print -fhandle

This example sends Figure No. 2 to the printer.

print -f2

Selecting the Printer

7 Printing and Saving

7-40

You can select the printer you want to use with the Print dialog box or with the print
function.

Using the Graphical User Interface

1 Select Print from the figure window's File menu.
2 Select the printer from the list box near the top of the Print dialog box.
3 Click OK.

Using MATLAB Commands

You can select the printer using the -P switch of the print function.

This example prints Figure No. 3 to a printer called Calliope.

print -f3 -PCalliope

If the printer name has spaces in it, put single quotation marks around the -P option, as
shown here.

print '-Pmy local printer'

Note: On Macintosh computers, printer names shown in the print dialog might not work
when specified at the command line using the -P option. Use the following command to
get the names of the printers you can use with the -P option on your system.

[~,printers] = findprinters

Using a Network Print Server

On Windows systems, you can print to a network print server using the form shown here
for a printer named trinity located on a computer named PRINTERS.

print -P\\PRINTERS\trinity

Note: On Windows platforms, when you use the -P option to identify a printer to use, if
you specify any driver other than -dwin or -dwinc, MATLAB output goes to a file with
an appropriate extension but does not send it to the printer. You can then copy that file
to a printer.

 Change Figure Settings

7-41

Setting the Figure Size and Position

The default output figure size is 8 inches wide by 6 inches high, which maintains the
aspect ratio (width to height) of the MATLAB figure window. The figure's default position
is centered both horizontally and vertically when printed to a paper size of 8.5-by-11
inches.

You can change the size and position of the figure:

• “Using the Graphical User Interface” on page 7-41
• “Using MATLAB Commands” on page 7-43

Using the Graphical User Interface

Select Print Preview from the figure window's File menu to open the Print Preview
dialog box. Click the Layout tab to make changes to the size and position of your figure
on the printed page.

Use the text edit boxes on the left to enter new dimensions for your figure. Or, use the
handlebars on the rulers in the right-hand pane to drag the margins and location of your
figure with the mouse. The outer handlebars move the figure toward or away the nearest
margin, while the central handlebar repositions the figure on the page without changing
its proportions. Guidelines appear while you are using the handlebars.

7 Printing and Saving

7-42

Settings you can change in the Layout tab are as follows:

Placement

Choose whether you want the figure to be the same size as it is displayed on your screen,
or you want to manually change its size using the options in the Layout pane.

When you select the Use manual size and position mode, type the widths of any of the
four margins and the preview image responds after each entry you make. Select units

 Change Figure Settings

7-43

of measure (inches/centimeters/points) with pushbuttons on the Units section on the
bottom of the pane.

You can use the four buttons at the bottom of the Placement section to expand the figure
to fill the page, make its aspect ratio (ratio of y-extent to x-extent) as printed match that
of the figure, center the figure on the page, or restore the setup to what it was when
you opened the Print Preview dialog. Selecting Fill page can alter the aspect ratio of
your image. To get the maximum figure size without altering the aspect ratio, select Fix
aspect ratio.

Auto (actual size, centered)

Select this option to center the figure on the page; it will be the same size as it is in the
figure window. The four buttons below the control are dimmed when you select this
option.

Note Changes you make using Print Preview affect the printed output only. They do not
alter the figure displayed on your screen.

Using MATLAB Commands

To print your figure with a specific size or position, make sure the PaperPositionMode
property is set to manual (the default). Then set the PaperPosition property to the
desired size and position.

The PaperPosition property references a four-element row vector that specifies the
position and dimensions of the printed output. The form of the vector is

[left bottom width height]

where

• left specifies the distance from the left edge of the paper to the left edge of the
figure.

• bottom specifies the distance from the bottom of the paper to the bottom of the figure.
• width and height specify the figure's width and height.

The default values for PaperPosition are

[0.25 2.5 8.0 6.0]

7 Printing and Saving

7-44

This example sets the figure size to a width of 4 inches and height of 2 inches, with the
origin of the figure positioned 2 inches from the left edge of the paper and 1 inch from the
bottom edge.

set(gcf, 'PaperPositionMode', 'manual');

set(gcf, 'PaperUnits', 'inches');

set(gcf, 'PaperPosition', [2 1 4 2]);

Note PaperPosition specifies a bottom margin, rather than a top margin as Print
Preview does. When you set the top margin using Print Preview, This setting is used to
calculate the bottom margin, and updates the PaperPosition property appropriately.

Setting the Paper Size or Type

Set the paper size by specifying the dimensions or by choosing from a list of predefined
paper types. If you do not set a paper size or type, the default paper size of 8.5-by-11
inches is used.

Paper-size and paper-type settings are interrelated—if you set a paper type, the paper
size also updates. For example, if you set the paper type to US Legal, the width of the
paper updates to 8.5 inches and the height to 14 inches.

You can change the paper size and orientation:

• “Using the Graphical User Interface” on page 7-44
• “Using MATLAB Commands” on page 7-46

Using the Graphical User Interface

Select Print Preview from the figure window's File menu to open the Print Preview
dialog box. Click the Layout tab to make changes to the paper type and orientation of
the figure on the printed page.

 Change Figure Settings

7-45

Settings you can change in the Layout tab are as follows:

Paper Format, Units and Orientation

Select a paper type from the list under Format. If there is no paper type with suitable
dimensions, enter your own dimensions in the Width and Height fields. Make sure
Units is set appropriately to inches, centimeters, or points. If you change units
after setting a paper width and height, the Width and Height fields update to use the
units you just selected. The page region in the preview pane updates to show the new
paper format or size when you change them.

Use the Orientation buttons to select how you want the figure to be oriented on the
printed page. The illustration under “Setting the Paper Orientation” on page 7-46
shows the three types of orientation you can choose from.

7 Printing and Saving

7-46

Note Changes you make using Print Preview affect the printed output only. They do not
alter the figure displayed on your screen.

Using MATLAB Commands

Set the PaperType property to one of the built-in MATLAB paper types, or set the
PaperSize property to the dimensions of the paper.

When you select a paper type, the unit of measure is not automatically updated. We
recommend that you set the PaperUnits property first.

For example, these commands set the units to centimeters and the paper type to A4.

set(gcf, 'PaperUnits', 'centimeters');

set(gcf, 'PaperType', 'A4');

This example sets the units to inches and sets the paper size of 5-by-7 inches.

set(gcf, 'PaperUnits', 'inches');

set(gcf, 'PaperSize', [5 7]);

If you set a paper size for which there is no matching paper type, the PaperType
property is automatically set to 'custom'.

Setting the Paper Orientation

Paper orientation refers to how the paper is oriented with respect to the figure. The
choices are Portrait (the default), Landscape, and Rotated.

You can change the orientation of the figure:

• “Using the Graphical User Interface” on page 7-47
• “Using MATLAB Commands” on page 7-47

The figure below shows the same figure printed using the three different orientations.

 Change Figure Settings

7-47

Portrait Landscape Rotated (by 180 degrees)

Note The Rotated orientation is not supported by all printers. When the printer does
not support it, landscape is used.

Using the Graphical User Interface

1 Select Print Preview from the figure window's File menu and select the Layout
tab. (See “Using the Graphical User Interface” on page 7-44).

2 Select the appropriate option button under Orientation.
3 Click Close.

Using MATLAB Commands

Use the PaperOrientation figure property or the orient function. Use the orient
function if you always want your figure centered on the paper.

The following example sets the orientation to landscape:

set(gcf, 'PaperOrientation', 'landscape');

Centering the Figure

If you set the PaperOrientation property from portrait to either of the other
two orientation schemes, you might find that what was previously a centered image

7 Printing and Saving

7-48

is now positioned near the paper's edge. You can either adjust the position (use the
PaperPosition property), or you can use the orient function, which always centers
the figure on the paper.

The orient function takes the same argument names as PaperOrientation. For
example,

orient rotated;

Orientation set to 'landscape' using
'PaperOrientation' property.

Orientation set to 'landscape' using
orient function.

Selecting a Renderer

A renderer is software and/or hardware that enables MATLAB to display, print, or export
a figure. With regard to printing, the renderer determines if the output is a vector or a
bitmap format.

For information on specifying the renderer, see these sections:

• “Using the Graphical User Interface” on page 7-49
• “Using MATLAB Commands” on page 7-49

Supported Renderers

MATLAB supports two rendering methods with the following characteristics:

Painter's

 Change Figure Settings

7-49

• Draws figures using vector graphics
• Generally produces results that scale better and can be edited in application programs

designed for this purpose
• The renderer for creating PostScript, EPS, PDF, metafile, or SVG files.

OpenGL

• Draws figures using bitmap (raster) graphics
• Generally faster than Painter's
• Can access graphics rendering hardware available on some systems
• Avoids possible limitations of Painter's with regard to sorting graphics objects

arranged in 3-D views

For more detailed information about changing rendering methods, see the Figure
Renderer property.

Manually Set the Renderer

Set the renderer appropriately for the type of output file:

• Use Painter’s for vector format
• Use OpenGL for bitmap formats

Using the Graphical User Interface

1 Open the Print Preview dialog box by selecting Print Preview from the figure
window's File menu. Select the Advanced tab.

2 In the Renderer drop-down menu, select the desired rendering method from the list
box.

3 Click Close.

Using MATLAB Commands

You can use the Renderer property or a switch with the print function to set the
renderer for printing or exporting. These two lines each set the renderer for the current
figure to painters.

set(gcf,'Renderer','painters');

7 Printing and Saving

7-50

or

print -painters

The first example saves the new value of Renderer with the figure. The second example
affects only the current print or export operation.

Renderer Selection

When you export a figure to a graphics file format, MATLAB selects the renderer based
on whether the output file type is a vector or bitmap format. However, MATLAB can
change the renderer only if the RendererMode property is set to auto.

If you are exporting to a vector format, MATLAB uses the painters renderer in most
cases, which results in true vector graphics that can be edited more easily in other
applications.

Setting the Resolution

Resolution refers to how accurately your figure is rendered when printed or exported.
Higher resolutions produce higher quality output. The specific definition of resolution
depends on whether your figure is output as a bitmap or as a vector graphic.

You can change the resolution used to print a figure:

• “Using the Graphical User Interface” on page 7-52
• “Using the Graphical User Interface on UNIX Platforms” on page 7-63
• “Using MATLAB Commands” on page 7-52

Default Resolution and When You Can Change It

The default resolution depends on the renderer used and the graphics format or printer
driver specified. The following two tables summarize the default resolutions and whether
you can change them.

Resolutions Used with Graphics Formats

Graphics Format Default Resolution Can Be Changed?

Built-in MATLAB export
formats, (except for EMF and
EPS)

150 dpi (always use OpenGL) Yes

 Change Figure Settings

7-51

Graphics Format Default Resolution Can Be Changed?

EMF export format (Enhanced
Metafile)

150 dpi Yes

EPS (Encapsulated PostScript) 150 dpi, if OpenGL; 864 dpi if
Painter's

Yes

Resolutions Used with Printer Drivers

Printer Driver Default Resolution Can Be Changed?

Windows and PostScript
drivers

150 dpi, if OpenGL; 864 dpi if
Painter's

Yes

Choosing a Setting

You might need to determine your resolution requirements through experimentation, but
you can also use the following guidelines.

For Printing

The default resolution of 150 dpi is normally adequate for typical laser-printer output.
However, if you are preparing figures for high-quality printing, such as a textbook or
color brochures, you might want to use 200 or 300 dpi. The resolution you can use can be
limited by the printer's capabilities.

For Exporting

If you are exporting your figure, base your decision on the resolution supported by the
final output device. For example, if you will import your figure into a word processing
document and print it on a printer that supports a maximum resolution setting of 300
dpi, you could export your figure using 300 dpi to get a precise one-to-one correspondence
between pixels in the file and dots on the paper.

Note The only way to set resolution when exporting is with the print function.

Impact of Resolution on Size and Memory Needed

Resolution affects file size and memory requirements. For both printing and exporting,
the higher the resolution setting, the longer it takes to render your figure.

7 Printing and Saving

7-52

Using the Graphical User Interface

To set the resolution for built-in MATLAB printer drivers:

1 From the Print dialog box, click Properties. This opens a new dialog box. (This box
can differ from one printer to another.)

2 You may be able to set the resolution from this dialog. If not, then click Advanced to
get to a dialog box that enables you to do this.

3 Set the resolution, and then click OK. (The resolution setting might be labeled by
another name, such as “Print Quality.”)

Using MATLAB Commands

If you use a Windows printer driver, you can only set the resolution using the Windows
Document Properties dialog box.

Otherwise, to set the resolution for printing or exporting, the syntax is

print -rnumber

where number is the number of dots per inch. To print or export a figure using screen
resolution, set number to 0 (zero).

This example prints the current figure with a resolution of 100 dpi:

print -r100

This example exports the current figure to a TIFF file using screen resolution:

print -r0 -dtiff myfile.tif

Setting the Axes Ticks and Limits

The default output size, 8-by-6 inches, is normally larger than the screen size. If the size
of your printed or exported figure is different from its size on the screen, the number and
placement of axes tick marks scale to suit the output size. This section shows you how to
lock them so that they are the same as they were when displayed.

You can change the resolution used when printing a MATLAB figure:

• “Using the Graphical User Interface” on page 7-53

 Change Figure Settings

7-53

• “Using MATLAB Commands” on page 7-54

Using the Graphical User Interface

Select Print Preview from the figure window's File menu to open the Print Preview
dialog box. Select the Advanced tab to make changes to the axes, UI controls, or
renderer settings.

Settings you can change in the Advanced tab are as follows, by panel:

Axes limits and ticks

If the size of your printed or exported figure is different from its size on the screen, the
number and placement of axes tick marks scale to suit the output size. Select Keep
screen limits and ticks to lock them so that they are the same as they were when
displayed. If you want to automatically adjust the ticks and limits when scaling for
printing, select Recompute limits and ticks.

Miscellaneous

Use the Renderer drop-down menu to specify which renderer to use in printing the
figure. Set the renderer to Painters, or OpenGL, or select auto to automatically
decide which one to use, depending on the characteristics of the figure. (See “Selecting a
Renderer” on page 7-48).

7 Printing and Saving

7-54

Use the Resolution drop-down menu to specify the resolution, in dots per inch (DPI), at
which to render and print the figure. You can select 150, 300, or 600 DPI, or type in a
different value (positive integer).

Figure UI Controls

By default, user interface controls are included in your printed or exported figure.
Clear the Print UIControls check box to exclude them. (See “Excluding User Interface
Controls from Printed Output” on page 7-63).

Note Changes you make using Print Preview affect the printed output only. They do not
alter the figure displayed on your screen.

Using MATLAB Commands

To set the XTickMode, YTickMode, and ZTickMode properties to manual, type

set(gca,'XTickMode','manual')

set(gca,'YTickMode','manual')

set(gca,'ZTickMode','manual')

Setting the Background Color

You can keep the background the same as is shown on the screen when printed, or
change the background to white. There are two types of background color settings in a
figure: the axes background and the figure background. The default displayed color of
both backgrounds is gray, but you can set them to any of several colors.

Regardless of the background colors in your displayed figure, by default, they are always
changed to white when you print or export. This section shows you how to retain the
displayed background colors in your output.

Using the Graphical User Interface

To retain the background color on a per figure basis:

1 Open the Print Preview dialog box by selecting Print Preview from the figure
window's File menu. Select the Color tab.

2 Select Same as figure.

 Change Figure Settings

7-55

3 Click Close.

If you are exporting your figure using the clipboard, use the Copy Options panel of the
Preferences dialog box.

Using MATLAB Commands

To retain your background colors, use

set(gcf,'InvertHardCopy','off');

The following example sets the figure background color to blue, the axes background
color to yellow, and then sets InvertHardCopy to off so that these colors appear in
your printed or exported figure.

set(gcf,'color','blue');

set(gca,'color','yellow');

set(gcf,'InvertHardCopy','off');

Setting Line and Text Characteristics

If you transfer your figures to Microsoft Word or PowerPoint applications, you can set
line and text characteristics to values recommended for those applications. The Figure
Copy Template Preferences dialog box provides Word and PowerPoint options to make
these settings, or you can set certain line and text characteristics individually.

You can change line and text characteristics:

• “Using the Graphical User Interface” on page 7-55
• “Using MATLAB Commands” on page 7-57

Using the Graphical User Interface

To open Figure Copy Template Preferences, select Preferences from the File menu, and
then click Figure Copy Template in the left pane.

7 Printing and Saving

7-56

Settings you can change in the Figure Copy Template Preferences dialog box are as
follows:

Microsoft Word or PowerPoint

Click Documents or Presentations to apply recommended MATLAB settings.

 Change Figure Settings

7-57

Text

Use options under Text to modify the appearance of all text in the figure. You can
change the font size, change the text color to black and white, and change the font style
to bold.

Lines

Use the Lines options to modify the appearance of all lines in the figure:

• Custom width — Change the line width.
• Change style (Black or white) — Change colored lines to black or white.
• Change style (B&W styles) — Change solid lines to different line styles (e.g., solid,

dashed, etc.), and black or white color.

UIControls and axes

If your figure includes user interface controls, you can choose to show or hide them by
clicking Show uicontrols. Also, to keep axes limits and tick marks as they appear on
the screen, click Keep axes limits and tick spacing. To allow automatic scaling of axes
limits and tick marks based on the size of the printed figure, clear this box.

Note Changes you make using Print Preview affect the printed output only. They do not
alter the figure displayed on your screen.

Using MATLAB Commands

You can use the set function on selected graphics objects in your figure to change
individual line and text characteristics.

For example, to change line width to 1.8 and line style to a dashed line, use

lineobj = findobj('Type','line');

set(lineobj,'LineWidth',1.8);

set(lineobj,'LineStyle','--');

To change the font size to 15 points and font weight to bold, use

textobj = findobj('Type','text');

set(textobj,'FontUnits','points');

7 Printing and Saving

7-58

set(textobj,'FontSize',15);

set(textobj,'FontWeight','bold');

Setting the Line and Text Color

When colored lines and text are dithered to gray by a black-and-white printer, it does not
produce good results for thin lines and the thin lines that make up text characters. You
can, however, force all line and text objects in the figure to print in black and white, thus
improving their appearance in the printed copy. When you select this setting, the lines
and text are printed all black or all white, depending on the background color.

The default is to leave lines and text in the color that appears on the screen.

Note Your background color might not be the same as what you see on the screen. See
the Color tab for an option that preserves the background color when printing.

You can change the resolution used to print a figure:

• “Using the Graphical User Interface” on page 7-58
• “Using MATLAB Commands” on page 7-60

Using the Graphical User Interface

Select Print Preview from the figure window's File menu to open the Print Preview
dialog box. Select the Lines and Text tab to make changes to the color of all lines and
text on the printed page. The controls for the Lines and Text tab are shown below:

 Change Figure Settings

7-59

Settings you can change in Lines and Text are as follows:

Lines

The default option in this panel causes lines to print at the same width they are
portrayed in the figure window. You can scale line width from 0 percent upwards

7 Printing and Saving

7-60

for printing using the Scale By field. To print lines at a particular point size, select
Custom. All lines on the plot will be the same weight when you use the Custom option;
the Scale By option respects relative line weight.

When you scale lines downward, you can prevent them from becoming too faint by setting
the Min Width option to Custom and specifying a minimum line width in points in that
field.

Text

The default is to print text in the same font and at the same size as it is in the figure. To
change the font (for all text) select Custom and choose a new font from the drop-down
list that is then enabled. Scale the font size using the Scale By option. To print text at a
particular point size, select Custom. All text on the plot will be printed at the point size
you specify when you use the Custom option; the Scale By option respects relative font
size. You can specify the Font Weight (normal, light, demi, or bold) and Font Angle
(normal, italic, or oblique) for all text as well, using the drop-down menus at the
bottom of the Text panel.

Header

Type any text that you want to appear at the top of the printed figure in the Header
Text edit field. If you want today's date and/or time appended to the header text, select
the appropriate format from the Date Style popup menu. To specify and style the header
font (which is independent of the font used in the figure), click the Font button and
choose a font name, size, and style from the Font selection window that appears.

Note Changes you make using Print Preview affect the printed output only. They do not
alter the figure displayed on your screen.

Using MATLAB Commands

There is no equivalent MATLAB command that sets line and text color depending on
background color. Set the color of lines and text using the set function on either line or
text objects in your figure.

This example sets all lines and text to black:

set(findobj('Type','line'),'Color','black');

set(findobj('Type','text'),'Color','black');

 Change Figure Settings

7-61

Specifying a Colorspace for Printing and Exporting

By default, color output is in the RGB color space (red, green, blue). If you plan to publish
and print MATLAB figures using printing industry standard four-color separation, you
might want to use the CMYK color space (cyan, magenta, yellow, black).

Using the Windows Graphical User Interface

Select Print Preview from the figure window's File menu to open the Print Preview
dialog box. Select the Color tab to make changes to the color of all lines and text on the
printed page. The controls for the Color tab are shown below:

7 Printing and Saving

7-62

You can print the contents of your figure in color, grayscale, or black-and-white by
selecting the appropriate button in the panel. When you select Color, you can choose
between an RGB (red/green/blue) or a CMYK (cyan/magenta/yellow/black) color
specification, if your printer is capable of it.

 Change Figure Settings

7-63

Independently of the Color Scale controls, you can specify a Background color for
printing. Select Same as figure to use the color used in the figure itself (default is gray),
or specify a Custom color from the combo box popup menu. The choices are black,
white, and several RGB color triplet values; you type any valid MATLAB colorspec in
this field as well, such as g, magenta, or .3 .4 .5.

The background color you specify is respected even if you choose Black and White or
Gray Scale in the Color Scale panel.

Using the Graphical User Interface on UNIX Platforms

1 Select Print from the figure window's File menu.
2 Click the Appearance tab.
3 In the Color Appearance panel, select Color.
4 Click Print.

On any platform, you can also indicate whether to print in color, grayscale or black-and-
white with the Print Preview dialog box.

Using MATLAB Commands

Use the -cmyk option with the print function. This example prints the current figure in
CMYK using a PostScript Level II color printer driver.

print -dpsc2 -cmyk

Excluding User Interface Controls from Printed Output

User interface controls are objects that you create and add to a figure. For example, you
can add a button to a figure that, when clicked, conveniently runs another MATLAB file.
By default, user interface controls are included in your printed or exported figure. This
section shows how to exclude them.

Using the Graphical User Interface

1 Open the Print Preview dialog box by selecting Print Preview from the figure
window's File menu, and then select the Advanced tab.

2 Under Miscellaneous, clear the Print UIControls check box.
3 Click Close.

7 Printing and Saving

7-64

Using MATLAB Commands

Use the -noui switch. This example specifies a color PostScript driver and excludes UI
controls.

print -dpsc -noui

This example exports the current figure to a color EPS file and excludes UI controls.

print -depsc -noui myfile.eps

Producing Uncropped Figures

In most cases, MATLAB crops the background tightly around the objects in the figure.
Depending on the printer driver or file format you use, you might be able to produce
uncropped output. An uncropped figure has increased background area and is often
desirable for figures that contain UI controls.

The setting you make changes the PostScript BoundingBox property saved with the
figure.

Using MATLAB Commands

Use the -loose option with the print function. On Windows platforms, the uncropped
option is only available if you print to a file.

This example exports the current figure, uncropped, to an EPS file.

print -deps -loose myfile.eps

 Troubleshooting

7-65

Troubleshooting

In this section...

“Introduction” on page 7-65
“Common Problems” on page 7-65
“Printing Problems” on page 7-66
“Exporting Problems” on page 7-69
“General Problems” on page 7-72

Introduction

This section describes some common problems you might encounter when printing
or exporting your figure. If you don't find your problem listed here, try searching the
Knowledge Base maintained by MathWorks® Technical Support Department. Go to
http://www.mathworks.com/support and enter a topic in the search field.

Common Problems

• Printing Problems

• “Printer Drivers” on page 7-66
• “Default Settings” on page 7-67
• “Color vs. Black and White” on page 7-67
• “Printer Selection” on page 7-68
• “Rotated Text” on page 7-68
• “SizeChangedFcn Warning” on page 7-68

• Exporting Problems

• “Background Color” on page 7-69
• “Default Settings” on page 7-69
• “Microsoft Word” on page 7-69
• “File Format” on page 7-70
• “Size of Exported File” on page 7-71
• “Making Movies” on page 7-71

http://www.mathworks.com/support

7 Printing and Saving

7-66

• “Extended Operations” on page 7-71
• General Problems

• “Background Color” on page 7-72
• “Default Settings” on page 7-72
• “Dimensions of Output” on page 7-72
• “Axis and Tick Labels” on page 7-73
• “UI Controls” on page 7-74
• “Cropping” on page 7-74
• “Text Object Font” on page 7-74
• “Printing and Exporting Graphs with Legends” on page 7-74

Printing Problems

Printer Drivers

I am using a Windows printer driver and encountering problems such as
segmentation violations, general protection faults, application errors, and
unexpected output.

Try one of the following solutions:

• Check the table of drivers in the print reference page to see if there are other
drivers you can try.

• Contact the printer vendor to obtain a different native printer driver. The behavior
you are experiencing might occur only with certain versions of the native printer
driver. If this doesn't help and you are on a Windows system, try reinstalling the
drivers that were shipped with your Windows installation disk.

• Export the figure to a graphics-format file, and then import it into another application
before printing it. For information about exporting MATLAB figures, see “Exporting
to a File” on page 7-17.

PostScript Output

When I use the print function with the -deps switch, I receive this error
message.

Encapsulated PostScript files cannot be sent to the printer.

File saved to disk under name 'figure2.eps'

 Troubleshooting

7-67

As the error message indicates, your figure was saved to a file. EPS is a graphics file
format and cannot be sent to a printer using a printer driver. To send your figure directly
to a printer, try using one of the PostScript driver switches. See the table of drivers in the
print reference page. To print an EPS file, you must first import it into a word processor
or other software program.

Default Settings

My printer uses a different default paper type than the MATLAB default type of
letter. How can I change the default paper type so that I don't have to set it for
each new figure?

You can set the default value for any property by adding a line to startup.m. Adding
the following line sets the default paper type to A4.

set(0,'DefaultFigurePaperType','A4');

In your call to set, combine the word Default with the name of the object Figure and
the property name PaperType.

I set the paper orientation to landscape, but each time I go to print a new
figure, the orientation setting is portrait again. How can I change the default
orientation so that I won't have to set it for each new figure?

See the explanation for the previous question. Adding the following line to startup.m
sets the default paper orientation to landscape.

set(0,'DefaultFigurePaperOrient','landscape')

Color vs. Black and White

I want the lines in my figure to print in black, but they keep printing in color.

You must be using a color printer driver. You can specify a black-and-white driver
using the print function or the Print Preview dialog box to force the lines for the
current figure to print in black. See “Setting the Line and Text Color” on page 7-58 for
instructions.

A white line in my figure keeps coming out black when I print it.

There are two things that can cause this to happen. Most likely, the line is positioned
over a dark background. The MATLAB default is to invert your background to white
when you print, and changes any white lines over the background to black. To avoid this,

../ref/print.html#drivers

7 Printing and Saving

7-68

retain your background color when you print. See “Setting the Background Color” on
page 7-54.

The other possibility is that you are using a Windows printer driver and the printer is
sending inaccurate color information to MATLAB.

I am using a color printer, but my figure keeps printing in black and white.

By default, MATLAB uses a black-and-white printer driver. You need to specify a color
printer driver.

Printer Selection

I have more than one printer connected to my system. How do I specify which
one to print my figure with?

You can use either the Print dialog box, or the MATLAB print function, specifying
the printer with the -P switch. For instructions using either method, see “Selecting the
Printer” on page 7-39.

Rotated Text

I have some rotated text in my figure. It looks fine on the screen, but when I
print it, the resolution is poor.

You are probably using bitmapped fonts, which don't rotate well. Try using TrueType
fonts instead.

SizeChangedFcn Warning

I get a warning about my SizeChangedFcn being used when I print my figure.

By default, MATLAB resizes your figure when converting it to printer coordinates.
That means it calls any SizeChangedFcn you have created for the figure and issues a
warning. You can avoid this warning by setting the figure to print at screen size.

Improper Printer Configuration

I get the following error message on my LINUX/UNIX system ‘Printing failure.
There are no properly configured printers on the system.’

This might be a problem with the location of the lpc command on your system. If not
present, create a symbolic link from /usr/sbin/lpc to wherever the lpc command
resides on your system.

 Troubleshooting

7-69

Exporting Problems

Background Color

I generated a figure with a black background and selected “Use figure color”
from the Copy Options panel of the Preferences dialog box. But when I
exported my figure, its background was changed to white.

You must have exported your figure to a file. The settings in Copy Options only apply to
figures copied to the clipboard.

There are two ways to retain the displayed background color: use the Print Preview
dialog box or set the InvertHardCopy property to off. See “Setting the Background
Color” on page 7-54 for instructions on either method.

Default Settings

I want to export all of my figures using the same size. Is there some way to do
this so that I don't have to set the size for each individual figure?

You can set the default value for any property by adding a line to startup.m. Adding
the following line sets the default figure size to 4-by-3 inches.

set(0,'DefaultFigurePaperPosition',[0 0 4 3]);

In your call to set, combine the word Default with the name of the object Figure and
the property name PaperPosition.

I use the clipboard to export my figures as metafiles. Is there some way to force
all of my copy operations to use the metafile format?

On Windows systems, use the Copy Options panel of the Preferences dialog box. Any
settings made here, including whether your figure is copied as a metafile or bitmap,
apply to all copy operations. See “Exporting to the Windows or Macintosh Clipboard” on
page 7-25 for instructions.

Microsoft Word

I exported my figure to an EPS file, and then tried to import it into my Word
document. My printout has an empty frame with an error message saying
that my EPS picture was not saved with a preview and will only print to a
PostScript printer. How do I include a TIFF preview?

7 Printing and Saving

7-70

Use the print command with the -tiff switch. For example,

print -deps -tiff filename

If you print to a non-PostScript printer with Word, the preview image is used for
printing. This is a low-resolution image that lacks the quality of an EPS graphic.

When I try to resize my figure in Word, its quality suffers.

You must have used a bitmap format. Bitmap files generally do not resize well. If you
are going to export using a bitmap format, try to set the figure's size while it's still in
MATLAB. See “Setting the Figure Size and Position” on page 7-41 for instructions.

As an alternative, you can use one of the vector formats, EMF or EPS. Figures exported
in these formats can be resized in Word without affecting quality.

I exported my figure as an EMF to the clipboard. When I paste it into Word,
some of the labels are printed incorrectly.

This problem occurs with some Microsoft Word and Windows versions. Try editing the
labels in Word.

File Format

I tried to import my exported figure into a word processing document, but I got
an error saying the file format is unrecognized.

There are two likely causes: you used the print function and forgot to specify the export
format, or your word processing program does not support the export format. Include a
format switch when you use the print function; simply including the file extension is not
sufficient. For instructions, see “Exporting to a File” on page 7-17.

If this does not solve your problem, check what formats the word processor supports.

I tried to append a figure to an EPS file, and received an error message

You cannot append figures to an EPS file. The -append option is only valid for
PostScript files, which should not be confused with EPS files. PostScript is a printer
driver; EPS is a graphics file format.

Of the supported export formats, only HDF supports storing multiple figures, but you
must use the imwrite function to append them. For an example, see the reference page
for imwrite.

 Troubleshooting

7-71

Size of Exported File

I've always used the EPS format to export my figures, but recently it started to
generate huge files. Some of my files are now several megabytes!

Your graphics have probably become complicated enough that MATLAB is using the
OpenGL renderer instead of the Painter's renderer. It does this to improve display time
or to handle attributes that Painter's cannot, such as lighting. However, using OpenGL
causes a bitmap to be stored in your EPS file, which with large figures leads to a large
file.

There are two ways to fix the problem. You can specify the Painter's renderer when you
export to EPS, or you can use a bitmap format, such as TIFF. The best renderer and type
of format to use depend upon the figure. For information about the rendering methods
and how to set them, see “Selecting a Renderer” on page 7-48.

Making Movies

I am using MATLAB functions to process a large number of frames. I would like
these frames to be saved as individual files for later conversion into a movie.
How can I do this?

Use getframe to capture the frames, imwrite to write them to a file, and movie to
create a movie from the files. For more information about creating a movie from the
captured frames, see the reference page for movie.

You can also save multiple figures to an AVI file. AVI files can be used for animated
sequences that do not need MATLAB to run. However, they do require an AVI viewer.
For more information, see “Export to Audio and Video” in the MATLAB Programming
Fundamentals documentation.

Extended Operations

There are some export operations that cannot be performed using the Export
dialog box.

You need to use the print function to do any of the following operations:

• Export to a supported file format not listed in the Export dialog box. The formats not
available from the Export dialog box include HDF, some variations of BMP and PCX,
and the raw data versions of PBM, PGM, and PPM.

• Specify a resolution.

7 Printing and Saving

7-72

• Specify one of the following options:

• TIFF preview
• Loose bounding box for EPS files
• Compression quality for JPEG files
• CMYK output on Windows platforms

• Perform batch exporting.

General Problems

Background Color

When I output my figure, its background is changed to white. How can I get it
to have the displayed background color?

By default, when you print or export a figure, the background color inverts to white.
There are two ways to retain the displayed background color: use the Print Preview
dialog box or set the InvertHardCopy property to off. See “Setting the Background
Color” on page 7-54 for instructions on either method.

If you are exporting your figure to the clipboard, you can also use the Copy Options
panel of the Preferences dialog box. Setting the background here sets it for all figures
copied to the clipboard.

Default Settings

I need to produce diagrams for publications. There is a list of requirements
that I must meet for size of the figure, fonts types, etc. How can I do this easily
and consistently?

You can set the default value for any property by adding a line to startup.m. As an
example, the following line sets the default axes label font size to 12.

set(0,'DefaultAxesFontSize',12);

In your call to set, combine the word Default with the name of the object Axes and the
property name FontSize.

Dimensions of Output

The dimensions of my output are huge. How can I make it smaller?

 Troubleshooting

7-73

Check your settings for figure size and resolution, both of which affect the output
dimensions of your figure.

The default figure size is 8-by-6 inches. You can use the Print Preview dialog box or
the PaperPosition property to set the figure size. See “Setting the Figure Size and
Position” on page 7-41.

The default resolution depends on the export format or printer driver used. For example,
built-in MATLAB bitmap formats, like TIFF, have a default resolution of 150 dpi. You
can change the resolution by using the print function and the -r switch. For default
resolution values and instructions on how to change them, see “Setting the Resolution”
on page 7-50.

I selected “Auto (actual size, centered)” from the Print Preview menu, but my
output looks a little bigger, and my font looks different.

You probably output your figure using a higher resolution than your screen uses. Set
your resolution to be the same as the screen's.

As an alternative, if you are exporting your figure, see if your application enables you to
select a resolution. If so, import the figure at the same resolution it was exported with.
For more information about resolution and how to set it when exporting, see “Setting the
Resolution” on page 7-50.

Axis and Tick Labels

When I resize my figure below a certain size, my x-axis label and the bottom
half of the x-axis tick labels are missing from the output.

Your figure size might be too small to accommodate the labels. Labels are positioned
a fixed distance from the x-axis. Since the x-axis itself is positioned a relative distance
away from the window's edge, the label text might not fit. Try using a larger figure size
or smaller fonts. For instructions on setting the size of your figure, see “Setting the
Figure Size and Position” on page 7-41. For information about setting font size, see the
Text Properties properties page.

In my output, the x-axis has fewer ticks than it did on the screen.

MATLAB has rescaled your ticks because the size of your output figure is different from
its displayed size. There are two ways to prevent this: select Keep screen limits and
ticks from the Advanced tab of the Print Preview dialog box, or set the XTickMode,

7 Printing and Saving

7-74

YTickMode, and ZTickMode properties to manual. See “Setting the Axes Ticks and
Limits” on page 7-52 for details.

UI Controls

My figure contains UI controls. How do I prevent them from appearing in my
output?

Use the print function with the -noui switch. For details, see “Excluding User
Interface Controls from Printed Output” on page 7-63.

Cropping

I can't output my figure using the uncropped setting (i.e., a loose
BoundingBox).

Only PostScript printer drivers and the EPS export format support uncropped output.
There is a workaround for Windows printer drivers, however. Using the print function,
save your figure to a file that can be printed later. For an example see “Producing
Uncropped Figures” on page 7-64.

Text Object Font

I have a problem with text objects when printing with a PostScript printer
driver or exporting to EPS. The fonts are correct on the screen, but are
changed in the output.

You have probably used a font that is not supported by EPS and PostScript. All
unsupported fonts are converted to Courier.

Printing and Exporting Graphs with Legends

Why does the legend appear in a different location when I set legend Location
to Best or BestOutside?

When you print or export a graph containing a legend that you placed in the figure using
the Location option set to Best or BestOutside, MATLAB can reposition the legend
in the output. This repositioning happens because the process of printing or exporting a
figure can result in changes to certain properties that affect the choice of legend location.

To avoid potential repositioning of the legend in printed or exported output, set the
legend position explicitly with a four-element vector. For more information on legend
position, see the legend function.

 Saving Figures

7-75

Saving Figures

In this section...

“Saving and Loading Graphs” on page 7-75
“FIG-File Format” on page 7-76
“Saving Figures From the Menu” on page 7-76
“Saving to a Different Format — Exporting Figures” on page 7-77
“Printing Figures” on page 7-78
“Generating a MATLAB File to Recreate a Graph” on page 7-79

Saving and Loading Graphs

You can save and reload graphs using the savefig and openfig functions. For example,
create a bar graph and save it to a file called barGraph.fig (the .fig extension is
added automatically):

figure

bar(randn(1,5),'BarWidth',0.5);

savefig barGraph

You can reload the graph using openfig:

fig = openfig('barGraph');

MATLAB creates a new figure, a new axes, and a new bar object using the same data as
the original objects. Most of the property values of the new objects are the same as the
original objects.

However, the Parent and Children properties now contain the new object handles.
Also, MATLAB applies any default or system values that are different from those in the
environment in which you saved the figure.

For example, suppose you set a default figure color after saving the barGraph.fig file.
MATLAB uses the default when creating the new figure.

Accessing the New Object

To get the handle to the new bar object, use findobj and the figure handle returned by
openfig:

7 Printing and Saving

7-76

h = findobj(fig,'Type','bar');

You can use h2 to set and get properties on the new bar object:

h.BarWidth

ans =

 0.5000

For more information on finding objects, see “Find Objects” on page 16-5

FIG-File Format

The MATLAB FIG-file is a binary format to which you can save figures so that they can
be opened in subsequent MATLAB sessions. The whole figure, including graphs, graph
data, annotations, data tips, menus and other uicontrols, is saved. (The only exception is
highlighting created by data brushing.) These files have a .fig filename extension.

If you want to save the figure in a format that can be used by another application, see
“Saving to a Different Format — Exporting Figures” on page 7-77.

Saving Figures From the Menu

To save a graph in a figure file,

1 Select Save from the figure window File menu or click the Save button on the
toolbar. If this is the first time you are saving the file, the Save As dialog box
appears.

2 Make sure that the Save as type is MATLAB Figure (*.fig) on the drop-down
menu.

3 Specify the name you want to give to the figure file.
4 Click OK.

The graph is saved as a figure file (.fig), which is a binary file format used to store
figures.

You can also use the saveas command.

Use the savefig command to create backward compatible FIG-files.

 Saving Figures

7-77

Opening a Figure File

To open a figure file, perform these steps:

1 Select Open from the File menu or click the Open button on the toolbar.
2 Select the figure file you want to open and click OK.

The figure file appears in a new figure window.

You can also use the open command.

Saving to a Different Format — Exporting Figures

To save a figure in a format that can be used by another application, such as the
standard graphics file formats TIFF or EPS, perform these steps:

1 Select Export Setup from the File menu. This dialog provides options you can
specify for the output file, such as the figure size, fonts, line size and style, and
output format.

2 Select Export from the Export Setup dialog. A standard Save As dialog appears.
3 Select the graphic format from the list of formats in the Save as type drop-down

menu. This selects the format of the exported file and adds the standard filename
extension given to files of that type.

4 Enter the name you want to give the file, less the extension.
5 Click Save.

Export from Save As Dialog

You can use the Save As dialog to export a figure to a standard file format:

1 Select Save As from the File menu.
2 Enter a file name in the File name text field
3 Select a file type from the Save as type drop-down menu.
4 Click Save.

You can also use the saveas function to export figure to specific file formats. However,
the saveas function and the Save As dialog do not produce identical results:

7 Printing and Saving

7-78

• The Save As dialog produces images at screen resolution and at screen size.
• The saveas function uses the default resolution of 150 DPI and honors the figure

PaperPosition and PaperPositionMode properties to determine the size of the
image.

Copying a Figure to the Clipboard

On Microsoft systems, you can also copy a figure to the clipboard and then paste it into
another application:

1 Select Copy Options from the Edit menu. The Copying Options page of the
Preferences dialog box appears.

2 Complete the fields on the Copying Options page and click OK.
3 Select Copy Figure from the Edit menu.

The figure is copied to the Windows clipboard. You can then paste the figure from
the Windows clipboard into a file in another application.

Printing Figures

Before printing a figure,

1 Select Print Preview from the File menu to set printing options, including plot size
and position, and paper size and orientation.

The Print Preview dialog box opens.
2 Make changes in the dialog box. Changes you can make are arranged by tabs on the

left-hand pane. If you want the printed output to match the annotated plot you see
on the screen exactly,

a On the Layout tab, click Auto (Actual Size, Centered).
b On the Advanced tab, click Keep screen limits and ticks.

For information about other options for print preview, click the Help button in the
dialog box.

To print a figure, select Print from the figure window File menu and complete the Print
dialog box that appears.

You can also use the print command.

 Saving Figures

7-79

Generating a MATLAB File to Recreate a Graph

You can generate a MATLAB file from a graph, which you can then use to reproduce the
graph. This feature is particularly useful for capturing modifications you make using the
plot tools.

1 Select Generate Code from the File menu.

The generated code displays in the MATLAB Editor.
2 Save the file using Save As from the Editor File menu.

Running the Saved File

Generated files do not store the data necessary to recreate the graph, so you must supply
the data arguments. The data arguments do not need to be identical to the original data.
Comments at the beginning of the file state the type of data expected.

For example, the following statements illustrate a case where three input vectors are
required.

function createfigure(yvector1)

 %CREATEFIGURE(YVECTOR1)

 % YVECTOR1: bar yvector

 % Auto-generated by MATLAB on 08-Jul-2014 17:19:46

 % Create figure

 figure1 = figure;

 % Create axes

 axes1 = axes('Parent',figure1,'XTick',[1 2 3 4 5]);

 box(axes1,'on');

 hold(axes1,'on');

 % Create bar

 bar(yvector1,'BarWidth',0.5);

7-80

8

Axes Active Position

8 Axes Active Position

8-2

Axes Resize to Accommodate Titles and Labels

In this section...

“Axes Layout” on page 8-2
“Properties Controlling Axes Size” on page 8-2
“Using OuterPosition as the ActivePositionProperty” on page 8-5
“ActivePositionProperty = OuterPosition” on page 8-5
“ActivePositionProperty = Position” on page 8-6
“Axes Resizing in Subplots” on page 8-7

Axes Layout

Axes properties control the layout of titles and axis labels within the figure. You can
control which dimensions axes can change to accommodate the titles and labels by
setting the appropriate properties.

Properties Controlling Axes Size

When you create a graph, MATLAB creates an axes to display the graph. The axes is
sized to fit in the figure and automatically resizes as you resize the figure. MATLAB
applies the automatic resize behavior only when the axes Units property is set to
normalized (the default).

You can control the resize behavior of the axes using the following axes properties:

• OuterPosition — Defines the boundary of the axes including the axis labels, title,
and a margin. For figures with only one axes, OuterPosition encompasses the
interior of the figure.

• Position — The boundary of the axes, excluding the tick marks and labels, title, and
axis labels.

• ActivePositionProperty — Specifies whether to use the OuterPosition or the
Position property as the size to preserve when resizing the figure containing the
axes.

• TightInset — The margins MATLAB adds to the width and height of the Position
property to include text labels, title, and axis labels. This property is read only.

 Axes Resize to Accommodate Titles and Labels

8-3

• Units — Keep this property set to 'normalized' to enable automatic axes resizing.

Note: MATLAB changes only the current axes' properties by default. If your plot has
multiple axes, MATLAB does not automatically resize any secondary axes.

The following graph shows the areas defined by the OuterPosition, the Position
expanded by TightInset , and the Position properties.

When you add axis labels and a title, the TightInset changes to accommodate the
additional text.

8 Axes Active Position

8-4

The size of the rectangle defined by the TightInset and Position properties includes
all graph text. The Position and OuterPosition properties remain unchanged.

 Axes Resize to Accommodate Titles and Labels

8-5

Using OuterPosition as the ActivePositionProperty

As you resize the figure, MATLAB maintains the area defined by the TightInset and
Position so that the text is not cut off. Compare the next two graphs, which have both
been resized to the same figure size.

ActivePositionProperty = OuterPosition

8 Axes Active Position

8-6

ActivePositionProperty = Position

The following figure shows how the default property values apply to 3-D graphs.

 Axes Resize to Accommodate Titles and Labels

8-7

Axes Resizing in Subplots

When there are multiple axes in a figure use the ActivePositionProperty to prevent
titles and labels from being overwritten .

The following figure illustrates how MATLAB resizes the axes to accommodate the
multiline titles on the lower two axes when the ActivePositionProperty is 'position'.

8 Axes Active Position

8-8

Setting the ActivePositionProperty property to 'outerposition' reduces the height of
the two upper axes to provide better spacing of the subplots.

 Axes Resize to Accommodate Titles and Labels

8-9

8-10

9

Controlling Graphics Output

• “Control Graph Display” on page 9-2
• “Prepare Figures and Axes for Graphs” on page 9-5
• “Use newplot to Control Plotting” on page 9-9
• “Responding to Hold State” on page 9-12
• “Prevent Access to Figures and Axes” on page 9-14

9 Controlling Graphics Output

9-2

Control Graph Display

In this section...

“What You Can Control” on page 9-2
“Targeting Specific Figures and Axes” on page 9-2

What You Can Control

MATLAB allows many figure windows to be open simultaneously during a session. You
can control which figures and which axes MATLAB uses to display the result of plotting
functions. You can also control to what extent MATLAB clears and resets the properties
of the targeted figures and axes.

You can modify the way MATLAB plotting functions behave and you can implement
specific behaviors in plotting functions that you write.

Consider these aspects:

• Can you prevent a specific figure or axes from becoming the target for displaying
graphs?

• What happens to an existing graph when you plot more data to that graph? Is the
existing graph replaced or are new graphics objects added to the existing graph?

Targeting Specific Figures and Axes

By default, MATLAB plotting functions display graphs in the current figure and current
axes (the objects returned by gcf and gca respectively). You can direct the output to
another figure and axes by:

• Explicitly specifying the target axes with the plotting function.
• Making the target axes the current axes.

Specify the Target Axes

Suppose you create a figure with four axes and save the handles in the array ax:

for k = 1:4

 ax(k) = subplot(2,2,k);

end

 Control Graph Display

9-3

Call plot with the axes handle as the first argument:

plot(ax(1),1:10)

For plotting functions that do not support the axes first argument, set the Parent
property:

t = 0:pi/5:2*pi;

patch(sin(t),cos(t),'y','Parent',ax(2))

Make the Target Current

To specify a target, you can make a figure the current figure and an axes in that figure
the current axes. Plotting functions use the current figure and its current axes by
default. If the current figure has no current axes, MATLAB creates one.

If fig is the handle to a figure, then the statement

figure(fig)

• Makes fig the current figure.
• Restacks fig to be the frontmost figure displayed.
• Makes fig visible if it was not (sets the Visible property to on).
• Updates the figure display and processes any pending callbacks.

The same behavior applies to axes. If ax is the handle to an axes, then the statement

axes(ax)

• Makes ax the current axes.
• Restacks ax to be the frontmost axes displayed.
• Makes ax visible if it was not.
• Updates the figure containing the axes and process any pending callbacks.

Make Figure or Axes Current Without Changing Other State

You can make a figure or axes current without causing a change in other aspects of the
object state. Set the root CurrentFigure property or the figure object's CurrentAxes
property to the handle of the figure or axes that you want to target.

If fig is the handle to an existing figure, the statement

9 Controlling Graphics Output

9-4

r = groot;

r.CurrentFigure = fig;

makes fig the current figure. Similarly, if ax is the handle of an axes object, the
statement

fig.CurrentAxes = ax;

makes it the current axes, if fig is the handle of the axes’ parent figure.

 Prepare Figures and Axes for Graphs

9-5

Prepare Figures and Axes for Graphs

In this section...

“Behavior of MATLAB Plotting Functions” on page 9-5
“How the NextPlot Properties Control Behavior” on page 9-5
“Control Behavior of User-Written Plotting Functions” on page 9-7

Behavior of MATLAB Plotting Functions

MATLAB plotting functions either create a new figure and axes if none exist, or reuse an
existing figure and axes. When reusing existing axes, MATLAB

• Clears the graphics objects from the axes.
• Resets most axes properties to their default values.
• Calculates new axes limits based on the new data.

When a plotting function creates a graph, the function can:

• Create a figure and an axes for the graph and set necessary properties for the
particular graph (default behavior if no current figure exists)

• Reuse an existing figure and axes, clearing and resetting axes properties as required
(default behavior if a graph exists)

• Add new data objects to an existing graph without resetting properties (if hold is on)

The NextPlot figure and axes properties control the way that MATLAB plotting
functions behave.

How the NextPlot Properties Control Behavior

MATLAB plotting functions rely on the values of the figure and axes NextPlot
properties to determine whether to add, clear, or clear and reset the figure and axes
before drawing the new graph. Low-level object-creation functions do not check the
NextPlot properties. They simply add the new graphics objects to the current figure and
axes.

This table summarizes the possible values for the NextPlot properties.

9 Controlling Graphics Output

9-6

NextPlot Figure Axes

new Creates a new figure and
uses it as the current figure.

Not an option for axes.

add Adds new graphics objects
without clearing or
resetting the current figure.
(Default)

Adds new graphics objects
without clearing or resetting
the current axes.

replacechildren Removes all axes objects
whose handles are not
hidden before adding
new objects. Does not
reset figure properties.
Equivalent to clf.

Removes all axes child
objects whose handles are
not hidden before adding
new graphics objects. Does
not reset axes properties.
Equivalent to cla.

replace Removes all axes objects
and resets figure properties
to their defaults before
adding new objects.
Equivalent to clf reset.

Removes all child objects
and resets axes properties to
their defaults before adding
new objects. Equivalent to
cla reset. (Default)

Plotting functions call the newplot function to obtain the handle to the appropriate axes.

The Default Scenario

Consider the default situation where the figure NextPlot property is add and the axes
NextPlot property is replace. When you call newplot, it:

1 Checks the value of the current figure's NextPlot property (which is, add).

and y.
2 Determines that MATLAB can draw into the current figure without modifying the

figure. If there is no current figure, newplot creates one, but does not recheck its
NextPlot propert

3 Checks the value of the current axes' NextPlot property (which is, replace),
deletes all graphics objects from the axes, resets all axes properties (except
Position and Units) to their defaults, and returns the handle of the current axes.
If there is no current axes, newplot creates one, but does not recheck its NextPlot
property.

4 Deletes all graphics objects from the axes, resets all axes properties (except
Position and Units) to their defaults, and returns the handle of the current axes.

 Prepare Figures and Axes for Graphs

9-7

If there is no current axes, newplot creates one, but does not recheck its NextPlot
property.

hold Function and NextPlot Properties

The hold function provides convenient access to the NextPlot properties. When you
want add objects to a graph without removing other objects or resetting properties use
hold on:

• hold on — Sets the figure and axes NextPlot properties to add. Line graphs
continue to cycle through the ColorOrder and LineStyleOrder property values.

• hold off — Sets the axes NextPlot property to replace

Use the ishold to determine if hold is on or off.

Control Behavior of User-Written Plotting Functions

MATLAB provides the newplot function to simplify writing plotting functions that
conform to the settings of the NextPlot properties.

newplot checks the values of the NextPlot properties and takes the appropriate action
based on these values. Place newplot at the beginning of any function that calls object
creation functions.

When your function calls newplot, newplot first queries the figure NextPlot property.
Based on the property values newplot then takes the action described in the following
table based on the property value.

Figure NextPlot Property
Value

newplot Function

No figures exist Creates a figure and makes this figure the current figure.
add Makes the figure the current figure.
new Creates a new figure and makes it the current figure.
replacechildren Deletes the figure's children (axes objects and their

descendants) and makes this figure the current figure.
replace Deletes the figure's children, resets the figure's properties

to their defaults, and makes this figure the current figure.

9 Controlling Graphics Output

9-8

Then newplot checks the current axes' NextPlot property. Based on the property value
newplot takes the action described in the following table.

Axes NextPlot Property Value newplot Function

No axes in current figure Creates an axes and makes it the current axes
add Makes the axes the current axes and returns its handle.
replacechildren Deletes the axes' children and makes this axes the current

axes.
replace Deletes the axes' children, reset the axes' properties to

their defaults, and makes this axes the current axes.

 Use newplot to Control Plotting

9-9

Use newplot to Control Plotting

This example shows how to prepare figures and axes for user-written plotting functions.

Use newplot to manage the output from specialized plotting functions. The myPlot2D
function:

• Customizes the axes and figure appearance for a particular publication requirement.
• Uses revolving line styles and a single color for multiline graphs.
• Adds a legend with specified display names.

function myPlot2D(x,y)

 % Call newplot to get the axes handle

 cax = newplot;

 % Customize axes

 cax.FontName = 'Times';

 cax.FontAngle = 'italic';

 % Customize figure

 fig = cax.Parent;

 fig.MenuBar= 'none';

 % Call plotting commands to

 % produce custom graph

 hLines = line(x,y,...

 'Color',[.5,.5,.5],...

 'LineWidth',2);

 lso = ['- ';'--';': ';'-.'];

 setLineStyle(hLines)

 grid on

 legend('show','Location','SouthEast')

 function setLineStyle(hLines)

 style = 1;

 for ii = 1:length(hLines)

 if style > length(lso)

 style = 1;

 end

 hLines(ii).LineStyle = lso(style,:);

 hLines(ii).DisplayName = num2str(style);

 style = style + 1;

 end

 end

end

This graph shows typical output for the myPlot2D function:

9 Controlling Graphics Output

9-10

x = 1:10;

y = peaks(10);

myPlot2D(x,y)

The myPlot2D function shows the basic structure of a user-written plotting functions:

• Call newplot to get the handle of the target axes and to apply the settings of the
NextPlot properties of the axes and figure.

• Use the returned axes handle to customize the axes or figure for this specific plotting
function.

• Call plotting functions (for example, line and legend) to implement the specialized
graph.

 Use newplot to Control Plotting

9-11

Because myPlot2D uses the handle returned by newplot to access the target figure and
axes, this function:

• Adheres to the behavior of MATLAB plotting functions when clearing the axes with
each subsequent call.

• Works correctly when hold is set to on

The default settings for the NextPlot properties ensure that your plotting functions
adhere to the standard MATLAB behavior — reuse the figure window, but clear and
reset the axes with each new graph.

9 Controlling Graphics Output

9-12

Responding to Hold State

This example shows how to test for hold state and respond appropriately in user-defined
plotting functions.

Plotting functions usually change various axes parameters to accommodate different
data. The myPlot3D function:

• Uses a 2-D or 3-D view depending on the input data.
• Respects the current hold state, to be consistent with the behavior of MATLAB

plotting functions.

function myPlot3D(x,y,z)

 % Call newplot to get the axes handle

 cax = newplot;

 % Save current hold state

 hold_state = ishold;

 % Call plotting commands to

 % produce custom graph

 if nargin == 2

 line(x,y);

 % Change view only if hold is off

 if ~hold_state

 view(cax,2)

 end

 elseif nargin == 3

 line(x,y,z);

 % Change view only if hold is off

 if ~hold_state

 view(cax,3)

 end

 end

 grid on

end

For example, the first call to myPlot3D creates a 3-D graph. The second call to myPlot3D
adds the 2-D data to the 3-D view because hold is on.

[x,y,z] = peaks(20);

myPlot3D(x,y,z)

hold on

myPlot3D(x,y)

 Responding to Hold State

9-13

9 Controlling Graphics Output

9-14

Prevent Access to Figures and Axes

In this section...

“Why Prevent Access” on page 9-14
“How to Prevent Access” on page 9-14

Why Prevent Access

In some situations it is important to prevent particular figures or axes from becoming the
target for graphics output. That is, prevent them from becoming the current figure, as
returned by gcf, or the current axes, as returned by gca.

You might want to prevent access to a figure containing the controls that implement
a user interface. Or, you might want to prevent access to an axes that is part of an
application program accessed only by the application.

How to Prevent Access

Prevent MATLAB functions from targeting a particular figure or axes by removing their
handles from the list of visible handles.

Two properties control handle visibility: HandleVisibility and ShowHiddenHandles

HandleVisibility is a property of all graphics objects. It controls the visibility of the
object’s handle to three possible values:

• on — You can obtain the object's handle with functions that return handles, such as
(gcf, gca, gco, get, and findobj). This is the default behavior.

• callback — The object's handle is visible only within the workspace of a callback
function.

• off — The handle is hidden from all functions executing in the command window and
in callback functions.

Properties Affected by Handle Visibility

When an object’s HandleVisibility is set to callback or off:

• The object's handle does not appear in its parent's Children property.

 Prevent Access to Figures and Axes

9-15

• Figures do not appear in the root's CurrentFigure property.
• Axes do not appear in the containing figure's CurrentAxes property.
• Graphics objects do not appear in the figure's CurrentObject property.

Functions Affected by Handle Visibility

When a handle is not visible in its parent's list of children, functions that obtain handles
by searching the object hierarchy cannot return the handle. These functions include get,
findobj, gca, gcf, gco, newplot, cla, clf, and close.

Values Returned by gca and gcf

When a hidden-handle figure is topmost on the screen, but has visible-handle figures
stacked behind it, gcf returns the topmost visible-handle figure in the stack. The same
behavior is true for gca. If no visible-handle figures or axes exist, calling gcf or gca
creates one.

Access Hidden-Handle Objects

The root ShowHiddenHandles property enables and disables handle visibility control.
By default, ShowHiddenHandles is off, which means MATLAB follows the setting of
every object’s HandleVisibility property.

Setting ShowHiddenHandles to on is equivalent to setting the HandleVisibility property
of all objects in the graphics hierarchy to on.

Note: Axes title and axis label text objects are not children of the axes. To access the
handles of these objects, use the axes Title, XLabel, YLabel, and ZLabel properties.

The close function also allows access to hidden-handle figures using the hidden option.
For example:

close('hidden')

closes the topmost figure on the screen, even if its handle is hidden.

Combining all and hidden options:

close('all','hidden')

closes all figures.

9 Controlling Graphics Output

9-16

Handle Validity Versus Handle Visibility

All handles remain valid regardless of the state of their HandleVisibility property. If you
have assigned an object handle to a variable, you can always set and get its properties
using that handle variable.

10

Default Values

• “Default Property Values” on page 10-2
• “Default Values for Automatically Calculated Properties” on page 10-6
• “How MATLAB Finds Default Values” on page 10-8
• “Factory-Defined Property Values” on page 10-9
• “Define Default Line Styles” on page 10-10
• “Multilevel Default Values” on page 10-12

10 Default Values

10-2

Default Property Values

In this section...

“Predefined Values for Properties” on page 10-2
“Specify Default Values” on page 10-2
“Where in Hierarchy to Define Default” on page 10-3
“List Default Values” on page 10-3
“Set Properties to the Current Default” on page 10-4
“Remove Default Values” on page 10-4
“Set Properties to Factory-Defined Values” on page 10-4
“List Factory-Defined Property Values” on page 10-4
“Reserved Words” on page 10-5

Predefined Values for Properties

Nearly all graphics object properties have predefined values. Predefined values originate
from two possible sources:

• Default values defined on an ancestor of the object
• Factory values defined on the root of the graphics object hierarchy

Users can create default values for an object property, which take precedence over the
factory-defined values. Objects use default values when:

• Created in a hierarchy where an ancestor defines a default value
• Parented into a hierarchy where an ancestor defines a default value

Specify Default Values

Define a default property value using a string with these three parts:

'default' ObjectType PropertyName

• The word default
• The object type (for example, Line)

 Default Property Values

10-3

• The property name (for example, LineWidth)

A string that specified the default line LineWidth would be:

'defaultLineLineWidth'

Use this string to specify the default value. For example, to specify a default value of 2
points for the line LineWidth property, use the statement:

set(groot,'defaultLineLineWidth',2)

The string defaultLineLineWidth identifies the property as a line property. To specify
the figure color, use defaultFigureColor.

set(groot,'defaultFigureColor','b')

Where in Hierarchy to Define Default

In general, you should define a default value on the root level so that all subsequent
plotting function use those defaults. Specify the root in set and get statements using
the groot function, which returns the handle to the root.

You can define default property values on three levels:

• Root — values apply to objects created in during MATLAB session
• Figure — use for default values applied to children of the figure defining the defaults.
• Axes — use for default values applied only to children of the axes defining the

defaults and only when using low-level functions (light, line, ,patch, rectangle,
surface, text, and the low-level form of image).

For example, specify a default figure color only on the root level.

set(groot,'defaultFigureColor','b')

List Default Values

Use get to determine what default values are currently set on any given object level:

get(groot,'default')

returns all default values set in your current MATLAB session.

10 Default Values

10-4

Set Properties to the Current Default

Specifying a property value of 'default' sets the property to the first encountered
default value defined for that property. For example, these statements result in a green
surface EdgeColor:

set(groot,'defaultSurfaceEdgeColor','k')

h = surface(peaks);

set(gcf,'defaultSurfaceEdgeColor','g')

set(h,'EdgeColor','default')

Because a default value for surface EdgeColor exists on the figure level, MATLAB
encounters this value first and uses it instead of the default EdgeColor defined on the
root.

Remove Default Values

Specifying a property value of 'remove' gets rid of user-defined default values. The
statement

set(groot,'defaultSurfaceEdgeColor','remove')

removes the definition of the default surface EdgeColor from the root.

Set Properties to Factory-Defined Values

Specifying a property value of 'factory' sets the property to its factory-defined value.
For example, these statements set the EdgeColor of surface h to black (its factory
setting), regardless of what default values you have defined:

set(gcf,'defaultSurfaceEdgeColor','g')

h = surface(peaks);

set(h,'EdgeColor','factory')

List Factory-Defined Property Values

You can list factory values:

• get(groot,'factory') — List all factory-defined property values for all graphics
objects

 Default Property Values

10-5

• get(groot,'factoryObjectType') — List all factory-defined property values for
a specific object

• get(groot,'factoryObjectTypePropertyName') — List factory-defined value
for the specified property.

Reserved Words

Setting a property value to default, remove, or factory produces the effects described
in the previous sections. To set a property to one of these words (for example, a text
String property set to the word default), precede the word with the backslash
character:

h = text('String','\default');

10 Default Values

10-6

Default Values for Automatically Calculated Properties

In this section...

“What Are Automatically Calculated Properties” on page 10-6
“Default Values for Automatically Calculated Properties” on page 10-6

What Are Automatically Calculated Properties

When you create a graph, MATLAB sets certain property values appropriately for the
particular graph. These properties, such as those controlling axis limits and the figure
renderer, have an associated mode property.

The mode property determines if MATLAB calculates a value for the property (mode is
auto) or if the property uses a specified value (mode is manual). For more information on
automatically calculated properties, see “Automatically Calculated Properties” on page
19-16.

Default Values for Automatically Calculated Properties

Defining a default value for an automatically calculated property requires two steps:

• Define the property default value
• Define the default value of the mode property as manual

Setting X-Axis Limits

Suppose you want to define default values for the x-axis limits. Because the axes XLim
property is usually automatically calculated, you must set the associated mode property
(XLimMode) to manual.

set(groot,'defaultAxesXLim',[0 8])

set(groot,'defaultAxesXLimMode','manual')

plot(1:20)

The axes uses the default x-axis limits of [0 8]:

 Default Values for Automatically Calculated Properties

10-7

10 Default Values

10-8

How MATLAB Finds Default Values

All graphics object properties have values built into MATLAB. These values are called
factory-defined values. Any property for which you do not specify a value uses the
predefined value.

You can also define your own default values. MATLAB uses your default value unless
you specify a value for the property when you create the object.

MATLAB searches for a default value beginning with the current object and continuing
through the object's ancestors until it finds a user-defined default value or until it
reaches the factory-defined value. Therefore, a search for property values is always
satisfied.

MATLAB determines the value to use for a given property according to this sequence of
steps:

1 Property default value specified as argument to the plotting function
2 If object is a line created by a high-level plotting function like plot, the axes

ColorOrder and LineStyleOrder definitions override default values defined for
the Color or LineStyle properties.

3 Property default value defined by axes (defaults can be cleared by plotting functions)
4 Property default value defined by figure
5 Property default value defined by root
6 If not default is defined, use factory default value

Setting default values affects only those objects created after you set the default. Existing
graphics objects are not affected.

 Factory-Defined Property Values

10-9

Factory-Defined Property Values

MATLAB defines values for all graphics object properties. Plotting functions use these
values if you do not specify values as arguments or as defaults. Generate a list of all
factory-defined values with the statement

a = get(groot,'Factory');

get returns a structure array whose field names are the object type and property name
concatenated, and field values are the factory value for the indicated object and property.
For example, this field,

factoryAxesVisible: 'on'

indicates that the factory value for the Visible property of axes objects is on.

You can get the factory value of an individual property with

get(groot,'factoryObjectTypePropertyName')

For example:

get(groot,'factoryTextFontName')

10 Default Values

10-10

Define Default Line Styles

This example shows how to set default line styles.

The plot function cycles through the colors defined by the axes ColorOrder property
when displaying multiline plots. If you define more than one value for the axes
LineStyleOrder property, plot increments the line style after each cycle through the
colors.

This example sets default values for axes objects on the root level:

set(groot,'DefaultAxesColorOrder',[0 0 0],...

 'DefaultAxesLineStyleOrder','-|--|:|-.')

Now, whenever you call plot, it uses black for all data plotted because the axes
ColorOrder contains only one color, but it cycles through the line styles defined for
LineStyleOrder.

Z = peaks;

x = 1:length(Z);

y = Z(4:7,:);

plot(x,y)

 Define Default Line Styles

10-11

10 Default Values

10-12

Multilevel Default Values

This example sets default values on more than one level in the hierarchy. These
statements create two axes in one figure window, setting default values on the figure
level and the axes level:

t = 0:pi/20:2*pi;

s = sin(t);

c = cos(t);

figure('defaultAxesPlotBoxAspectRatio',[1 1 1],...

 'defaultAxesPlotBoxAspectRatioMode','manual');

subplot(1,2,1,'defaultLineLineWidth',2);

hold on

plot(t,s,t,c)

text('Position',[3 0.4],'String','Sine')

text('Position',[2 -0.3],'String','Cosine')

subplot(1,2,2,'defaultTextRotation',90);

hold on

plot(t,s,t,c)

text('Position',[3 0.4],'String','Sine')

text('Position',[2 -0.3],'String','Cosine')

 Multilevel Default Values

10-13

Issuing the same plot and text statements to each subplot region results in a different
display, reflecting different default values defined for the axes. The default defined on
the figure applies to both axes.

It is necessary to call hold on to prevent the plot function from resetting axes
properties.

Note: If a property has an associated mode property (for example,
PlotBoxAspectRatio and PlotBoxAspectRatioMode), you must define a default
value of manual for the mode property when you define a default value for the associated
property.

10-14

11

Graphics Object Callbacks

• “Callbacks — Programmed Response to User Action” on page 11-2
• “Callback Definition” on page 11-4
• “Button Down Callback Function” on page 11-7
• “Define a Context Menu” on page 11-9
• “Define an Object Creation Callback” on page 11-11
• “Define an Object Deletion Callback” on page 11-13
• “Capturing Mouse Clicks” on page 11-14
• “Pass Mouse Click to Group Parent” on page 11-18
• “Pass Mouse Click to Obscured Object” on page 11-21

11 Graphics Object Callbacks

11-2

Callbacks — Programmed Response to User Action

In this section...

“What Are Callbacks?” on page 11-2
“Window Callbacks” on page 11-2

What Are Callbacks?

A callback is a function that executes in response to some predefined user action, such
as clicking on a graphics object or closing a figure window. Associate a callback with a
specific user action by assigning a function to the callback property for that user action.

All graphics objects have the following properties for which you can define callback
functions:

• ButtonDownFcn — Executes when you press the left mouse button while the cursor
is over the object or is within a few pixels of the object.

• CreateFcn — Executes during object creation after MATLAB set all properties
• DeleteFcn — Executes just before MATLAB deletes the object

Note: When you call a plotting function, such as plot or bar, MATLAB creates new
graphics objects and resets most figure and axes properties. Therefore, callback functions
that you have defined for graphics objects can be removed by MATLAB. To avoid this
problem, see “Define a Callback as a Default” on page 11-6.

Window Callbacks

Figures have additional properties that execute callbacks with specific user actions:

• CloseRequestFcn — Executes when a request is made to close the figure (by a
close command, by the window manager menu, or by quitting MATLAB).

• KeyPressFcn — Executes when you press a key while the cursor is in the figure
window.

• ResizeFcn — Executes when you resize the figure window.

 Callbacks — Programmed Response to User Action

11-3

• WindowButtonDownFcn — Executes when you press a mouse button while the
cursor is over the figure background, a disabled user-interface control, or the axes
background.

• WindowButtonMotionFcn— Executes when you move the cursor in the figure
window (but not over menus or title bar).

• WindowButtonUpFcn — Executes when you release the mouse button, after having
pressed the mouse button in the figure.

11 Graphics Object Callbacks

11-4

Callback Definition

In this section...

“Ways to Specify Callbacks” on page 11-4
“Callback Function Syntax” on page 11-4
“Related Information” on page 11-5
“Define a Callback as a Default” on page 11-6

Ways to Specify Callbacks

To use callback properties, assign the callback code to the property. Use one of the
following techniques:

• A function handle that references the function to execute.
• A cell array containing a function handle and additional arguments
• A string that evaluates to a valid MATLAB expression. MATLAB evaluates the string

in the base workspace.

Defining a callback as a string is not recommended. The use of a function specified as
function handle enables MATLAB to provide important information to your callback
function.

For more information, see “Callback Function Syntax” on page 11-4.

Callback Function Syntax

Graphics callback functions must accept at least two input arguments:

• The handle of the object whose callback is executing. Use this handle within your
callback function to refer to the callback object.

• The event data structure, which can be empty for some callbacks or contain specific
information that is described in the property description for that object.

Whenever the callback executes as a result of the specific triggering action, MATLAB
calls the callback function and passes these two arguments to the function .

For example, define a callback function called lineCallback for the lines created by
the plot function. With the lineCallback function on the MATLAB path, use the

 Callback Definition

11-5

@ operator to assign the function handle to the ButtonDownFcn property of each line
created by plot.

plot(x,y,'ButtonDownFcn',@lineCallback)

Define the callback to accept two input arguments. Use the first argument to refer to
the specific line whose callback is executing. Use this argument to set the line Color
property:

function lineCallback(src,evt)

 src.Color = 'red';

end

The second argument is empty for the ButtonDownFcn callback. The ~ character
indicates that this argument is not used.

Passing Additional Input Arguments

To define additional input arguments for the callback function, add the arguments to
the function definition, maintaining the correct order of the default arguments and the
additional arguments:

function lineCallback(src,evt,arg1,arg2)

 src.Color = 'red';

 src.LineStyle = arg1;

 src.Marker = arg2;

end

Assign a cell array containing the function handle and the additional arguments to the
property:

plot(x,y,'ButtonDownFcn',{@lineCallback,'--','*'})

You can use an anonymous function to pass additional arguments. For example:

plot(x,y,'ButtonDownFcn',@(src,eventdata)lineCallback(src,eventdata,'--','*'))

Related Information

For more information about function handles, see function handle.

For information on using anonymous functions, see “Anonymous Functions”.

../ref/function_handle.html

11 Graphics Object Callbacks

11-6

For information about using class methods as callbacks, see “Class Methods for Graphics
Callbacks”.

For information on how MATLAB resolves multiple callback execution, see the
BusyAction and Interruptible properties of the objects defining callbacks.

Define a Callback as a Default

You can assign a callback to the property of a specific object or you can define a default
callback for all objects of that type.

To define a ButtonDownFcn for all line objects, set a default value on the root level.

• Use the groot function to specify the root level of the object hierarchy.
• Define a callback function that is on the MATLAB path

• Assign a function handle referencing this function to the
defaultLineButtonDownFcn.

set(groot,'defaultLineButtonDownFcn',@lineCallback)

The default value remains assigned for the MATLAB session. You can make the default
value assignment in your startup.m file

For more information, see “Default Property Values”

 Button Down Callback Function

11-7

Button Down Callback Function

In this section...

“When to Use a Button Down Callback” on page 11-7
“How to Define a Button Down Callback” on page 11-7

When to Use a Button Down Callback

Button down callbacks execute when users left-click on the graphics object for which the
callback is assigned. Button down callbacks provide a simple way for users to interact
with an object without requiring you to program additional user-interface objects, like
push buttons or popup menu.

Program a button down callback when you want users to be able to:

• Perform a single operation on a graphics object by left-clicking
• Select among different operations performed on a graphics object using modifier keys

in conjunction with a left-click

How to Define a Button Down Callback

• Create the callback function that MATLAB executes when users left-click on the
graphics object.

• Assign a function handle that references the callback function to the ButtonDownFcn
property of the object.

...'ButtonDownFcn',@callbackFcn

Define the Callback Function

In this example, the callback function is called lineCallback. When you assign the
function handle to the ButtonDownFcn property, this function must be on the MATLAB
path.

Values used in the callback function include:

• src — The handle to the line object that the user clicks. MATLAB passes this
handle .

11 Graphics Object Callbacks

11-8

• src.Color — The line object Color property.

function lineCallback(src,~)

 src.Color = rand(1,3);

end

Using the Callback

Here is a call to the plot function that creates line graphs and defines a button down
callback for each line created.

plot(rand(1,5),'ButtonDownFcn',@lineCallback)

To use the callback, create the plot and left-click on a line.

 Define a Context Menu

11-9

Define a Context Menu

This example shows how to define a context menu.

In this section...

“When to Use a Context Menu” on page 11-9
“How to Define a Context Menu” on page 11-9

When to Use a Context Menu

Context menus are displayed when users right-click the graphics object for which you
assign the context menu. Context menus enable you to provide choices to users for
interaction with graphics objects.

Program a context menu when you want user to be able to:

• Choose among specific options by right-clicking a graphics object.
• Provide an indication of what each option is via the menu label.
• Produce a specific result without knowing key combinations.

How to Define a Context Menu

• Create a uicontextmenu object and save its handle.
• Create each menu item using uimenu.
• Define callbacks for each menu item in the context menu.
• Parent the individual menu items to the context menu and assign the respective

callback.
• Assign the context menu handle to the UIContextMenu property of the object for

which you are defining the context menu.

function cmHandle = defineCM

 cmHandle = uicontextmenu;

 uimenu(cmHandle,'Label','Wider','Callback',@increaseLW);

 uimenu(cmHandle,'Label','Inspect','Callback',@inspectLine);

end

function increaseLW(~,~)

11 Graphics Object Callbacks

11-10

% Increase line width

 h = gco;

 orgLW = h.LineWidth;

 h.LineWidth = orgLW+1;

end

function inspectLine(~,~)

% Open the property inspector

 h = gco;

 inspect(h)

end

The defineCM function returns the handle to the context menu that it creates. Assign
this handle to the UIContextMenu property of the line objects as they are created by the
plot function:

plot(rand(1,5),'UIContextMenu',defineCM)

Use a similar programming pattern for your specific requirements.

 Define an Object Creation Callback

11-11

Define an Object Creation Callback

This example shows how to define an object creation callback.

Define an object creation callback that specifies values for the LineWidth and Marker
properties of line objects.

function lineCreate(src,~)

 src.LineWidth = 2;

 src.Marker = 'o';

end

Assign this function as the default line creation callback using the line CreateFcn
property:

set(groot,'defaultLineCreateFcn',@lineCreate)

The groot function specifies the root of the graphics object hierarchy. Therefore, all lines
created in any given MATLAB session acquire this callback. All plotting functions that
create lines use these defaults.

An object’s creation callback executes directly after MATLAB creates the object and sets
all its property values. Therefore, the creation callback can override property name/value
pairs specified in a plotting function. For example:

set(groot,'defaultLineCreateFcn',@lineCreate)

h = plot(1:10,'LineWidth',.5,'Marker','none')

The creation callback executes after the plot function execution is complete. The
LineWidth and Marker property values of the resulting line are those values specified
in the creation callback:

h =

 Line with properties:

 Color: [0 0 1]

 LineStyle: '-'

 LineWidth: 2

 Marker: 'o'

 MarkerSize: 6

 MarkerFaceColor: 'none'

 XData: [1 2 3 4 5 6 7 8 9 10]

11 Graphics Object Callbacks

11-12

 YData: [1 2 3 4 5 6 7 8 9 10]

 ZData: []

Related Information

For information about default values, see “Default Property Values” on page 10-2

For information about defining callback functions, see “Callback Definition” on page 11-4

 Define an Object Deletion Callback

11-13

Define an Object Deletion Callback

This example shows how to define an object deletion callback.

The figDelete function is an example of a object deletion callback. Whenever the figure
is deleted, it performs the following steps :

• Displays a questdlg asking if you want to save the figure
• If yes, displays a uiputfile dialog to get the location and name of the saved figure

file
• Use savefig to save the figure to the file returned by uiputfile.

function figDelete(src,~)

 yn = questdlg('Save this graph?',...

 'Graph Being Destroyed',...

 'Yes','No','Yes');

 switch yn

 case 'Yes'

 fileName = uiputfile('*.fig','Save graph as');

 savefig(src,fileName)

 case 'No'

 return

 end

end

Assign the figDelete function to the figure DeleteFcn in the figure function:

figure('DeleteFcn',@figDelete)

Note: Do not define the figDelete function as a default value for the figure DeleteFcn
property because dialogs like questdlg are also figures. When MATLAB deletes the
questdlg, the figDelete function would execute recursively .

11 Graphics Object Callbacks

11-14

Capturing Mouse Clicks
In this section...

“Properties That Control Response to Mouse Clicks” on page 11-14
“Combinations of PickablePart/HitTest Values” on page 11-14
“Passing Mouse Click Up the Hierarchy” on page 11-15

Properties That Control Response to Mouse Clicks

There are two properties that determine if and how objects respond to mouse clicks:

• PickableParts — Determines if an object captures mouse clicks
• HitTest — Determines if the object can respond to the mouse click it captures or

passes the click to its closest ancestor.

Objects pass the click through the object hierarchy until reaching an object that can
respond.

Programing a Response to a Mouse Click

When an object captures and responds to a mouse click, the object:

• Executes its button down function in response to a mouse left-click — If the object
defines a callback for the ButtonDownFcn property, MATLAB executes this callback.

• Displays context menu in response to a mouse right-click — If the object defined a
context menu using the UIContextMenu property, MATLAB invokes this context
menu.

Note: Figures do not have a PickableParts property. Figures execute button callback
functions regardless of the setting of their HitTest property.

Note: If the axes PickableParts property is set to 'none', the axes children cannot
capture mouse clicks. In this case, all mouse clicks are captured by the figure.

Combinations of PickablePart/HitTest Values

Use the PickableParts and HitTest properties to implement the following behaviors:

 Capturing Mouse Clicks

11-15

• Clicked object captures mouse click and responds with button down callback or
context menu.

• Clicked object captures mouse click and passes the mouse click to one of its ancestors,
which can respond with button down callback or context menu.

• Clicked object does not capture mouse click. Mouse click can be captured by objects
behind the clicked object.

This table summarizes the response to a mouse click based on property values.

Axes
PickableParts

PickableParts HitTest Result of Mouse Click

visible/all visible (default) on (default) Clicking visible parts of object
executes button down callback or
invokes context menu

visible/all all on Clicking any part of the object,
even if not visible, makes object
current and executes button down
callback or invokes context menu

visible/all/none none on/off Clicking the object never makes it
the current object and can never
execute button down callback or
invoke context menu

none visible/all/none on/off Clicking any axes child objects
never executes button down
callback or invokes context menu

MATLAB searches ancestors using the Parent property of each object until finding a
suitable ancestor or reaching the figure.

Passing Mouse Click Up the Hierarchy

Consider the following hierarchy of objects and their PickableParts and HitTest
property settings.

11 Graphics Object Callbacks

11-16

This code creates the hierarchy:

function pickHit

f = figure;

ax = axes;

p = patch(rand(1,3),rand(1,3),'g');

l = line([1 0],[0 1]);

set(f,'ButtonDownFcn',@(~,~)disp('figure'),...

 'HitTest','off')

set(ax,'ButtonDownFcn',@(~,~)disp('axes'),...

 'HitTest','off')

set(p,'ButtonDownFcn',@(~,~)disp('patch'),...

 'PickableParts','all','FaceColor','none')

 Capturing Mouse Clicks

11-17

set(l,'ButtonDownFcn',@(~,~)disp('line'),...

 'HitTest','off')

end

Click the Line

Left-click the line:

• The line becomes the current object, but cannot execute its ButtonDownFcn callback
because its HitTest property is off.

• The line passes the hit to the closest ancestor (the parent axes), but the axes cannot
execute its ButtonDownFcn callback, so the axes passes the hit to the figure.

• The figure can execute its callback, so MATLAB displays figure in the Command
Window.

Click the Patch

The patch FaceColor is none. However, the patch PickableParts is all, so you can
pick the patch by clicking the empty face and the edge.

The patch HitTest property is on so the patch can become the current object. When the
patch becomes the current object, it executes its button down callback.

11 Graphics Object Callbacks

11-18

Pass Mouse Click to Group Parent

This example shows how a group of objects can pass a mouse click to a parent, which
operates on all objects in the group.

In this section...

“Objective and Design” on page 11-18
“Object Hierarchy and Key Properties” on page 11-18
“MATLAB Code” on page 11-19

Objective and Design

Suppose you want a single mouse click on any member of a group of objects to execute a
single button down callback affecting all objects in the group.

• Define the graphics objects to be added to the group.
• Assign an hggroup object as the parent of the graphics objects.
• Define a function to execute when any of the objects are clicked. Assign its function

handle to the hggroup object’s ButtonDownFcn property.
• Set the HitTest property of every object in the group to off so that the mouse click

is passed to the object’s parent.

Object Hierarchy and Key Properties

This example uses the following object hierarchy.

 Pass Mouse Click to Group Parent

11-19

MATLAB Code

Create a file with two functions:

• pickPatch — The main function that creates the graphics objects.
• groupCB — The local function for the hggroup callback.

The pickPatch function creates three patch objects and parents them to an hggroup
object. Setting the HitTest property of each patch to off directs mouse clicks to the
parent.

function pickPatch

 figure

 x = [0 1 2];

 y = [0 1 0];

 hGroup = hggroup('ButtonDownFcn',@groupCB);

 patch(x,y,'b',...

 'Parent',hGroup,...

11 Graphics Object Callbacks

11-20

 'HitTest','off')

 patch(x+2,y,'b',...

 'Parent',hGroup,...

 'HitTest','off')

 patch(x+3,y,'b',...

 'Parent',hGroup,...

 'HitTest','off')

end

The groupCB callback operates on all objects contained in the hggroup. The groupCB
function uses the callback source argument passed to the callback (src) to obtain the
handles of the patch objects.

Using the callback source argument (which is the handle to hggroup object) eliminates
the need to create global data or pass additional arguments to the callback.

A left-click on any patch changes the face color of all three patches to a random RGB
color value.

function groupCB(src,~)

 s = src.Children;

 set(s,'FaceColor',rand(1,3))

 end

end

For more information on callback functions, see “Callback Definition” on page 11-4

 Pass Mouse Click to Obscured Object

11-21

Pass Mouse Click to Obscured Object

This example shows how to pass mouse clicks to an obscured object.

Set the PickableParts property of a graphics object to none to prevent the object from
capturing a mouse click. This example:

• Defines a context menu for the axes that calls hold with values on or off
• Creates graphs in which none of the data objects can capture mouse clicks, enabling

all right-clicks to pass to the axes and invoke the context menu.

The axesHoldCM function defines a context menu and returns its handle.

function cmHandle = axesHoldCM

 cmHandle = uicontextmenu;

 uimenu(cmHandle,'Label','hold on','Callback',@holdOn);

 uimenu(cmHandle,'Label','hold off','Callback',@holdOff);

end

function holdOn(~,~)

 fig = gcbf;

 ax = fig.CurrentAxes;

 hold(ax,'on')

end

function holdOff(~,~)

 fig = gcbf;

 ax = fig.CurrentAxes;

 hold(ax,'off')

end

Create a bar graph and set the PickableParts property of the Bar objects:

bar(1:20,'PickableParts','none')

Create the context menu for the current axes:

ax = gca;

ax.UIContextMenu = axesHoldCM

Right-click over the bars in the graph and display the axes context menu:

11 Graphics Object Callbacks

11-22

12

Graphics Objects

• “Graphics Objects” on page 12-2
• “Features Controlled by Graphics Objects” on page 12-7

12 Graphics Objects

12-2

Graphics Objects

In this section...

“MATLAB Graphics Objects” on page 12-2
“Graphs Are Composed of Specific Objects” on page 12-2
“Organization of Graphics Objects” on page 12-2

MATLAB Graphics Objects

Graphics objects are the visual components used by MATLAB to display data graphically.
For example, a graph can contain lines, text, and axes, all displayed in a figure window.

Each object has a unique identifier called a handle. Using this handle, you can
manipulate the characteristics of an existing graphics object by setting object properties.
You can also specify values for properties when you create a graphics object. Typically,
you create graphics objects using plotting functions like plot, bar, scatter, and so on.

Graphs Are Composed of Specific Objects

When you create a graph, for example by calling the plot function, MATLAB
automatically performs a number of steps to produce the graph. These steps involve
creating objects and setting the properties of these objects to appropriate values for your
specific graph.

Organization of Graphics Objects

Graphics objects are organized into a hierarchy, as shown by the following diagram.

 Graphics Objects

12-3

The hierarchical nature of graphics objects reflects the containment of objects by other
objects. Each object plays a specific role in the graphics display.

For example, suppose you create a line graph with the plot function. An axes object
defines a frame of reference for the lines that represent data. A figure is the window to

12 Graphics Objects

12-4

display the graph. The figure contains the axes and the axes contains the lines, text,
legends, and other objects used to represent the graph.

Note: An axes is a single object that represents x-, y-, and z-axis scales, tick marks, tick
labels, axis labels, and so on.

Here is a simple graph.

This graph forms a hierarchy of objects.

 Graphics Objects

12-5

Parent-Child Relationship

The relationship among objects is held in the Parent and Children properties. For
example, the parent of an axes is a figure. The Parent property of an axes contains the
handle to the figure in which it is contained.

Similarly, the Children property of a figure contains any axes that the figure contains.
The figure Children property also contains the handles of any other objects it contains,
such as legends and user-interface objects.

You can use the parent-child relationship to find object handles. For example, if you
create a plot, the current axes Children property contains the handles to all the lines:

plot(rand(5))

ax = gca;

ax.Children

12 Graphics Objects

12-6

ans =

 5x1 Line array:

 Line

 Line

 Line

 Line

 Line

You can also specify the parent of objects. For example, create a group object and parent
the lines from the axes to the group:

hg = hggroup;

plot(rand(5),'Parent',hg)

 Features Controlled by Graphics Objects

12-7

Features Controlled by Graphics Objects

In this section...

“Purpose of Graphics Objects” on page 12-7
“Figures” on page 12-7
“Axes” on page 12-8
“Objects That Represent Data” on page 12-9
“Group Objects” on page 12-10
“Annotation Objects” on page 12-11

Purpose of Graphics Objects

Graphics objects represent data in intuitive and meaningful ways, such as line graphs,
images, text, and combinations of these objects. Graphics objects act as containers for
other objects or as representations of data.

• Containers — Figures display all graphics objects. Panels and groups enable
collections of objects to be treated as one entity for some operations.

• Axes are containers that define a coordinate system for the objects that represent the
actual data in graphs.

• Data visualization objects — Lines, text, images, surfaces, and patches that
implement various types of graphs.

Figures

Figures are the windows in which MATLAB displays graphics. Figures contain menus,
toolbars, user-interface objects, context menus, and axes.

Figures play two distinct roles in MATLAB:

• Containing graphs of data
• Containing user interfaces (which can include graphs in the interface)

Graphics Features Controlled by Figures

Figure properties control certain characteristics that affect graphs:

12 Graphics Objects

12-8

• Color and transparency of surfaces and patches — Alphamap and Colormap
• Appearance of plotted lines and axes grid lines — GraphicsSmoothing
• Printing and exporting graphs — figure printing properties
• Drawing speed and rendering features — Renderer

Figures use different drawing methods called renderers. There are two renderers:

• OpenGL — The default renderer used by MATLAB for most applications. For more
information, see opengl.

• Painters — Use when OpenGL has problems on a computer with particular graphics
hardware that has software defects or outdated software drivers. Also used for
exporting graphics for certain formats, such as PDF.

Note: For best results, ensure that your computer has the latest graphics hardware
drivers supplied by the hardware vendor.

For a list of all figure properties, see Figure Properties

Axes

MATLAB creates an axes to define the coordinate system of each graph. Axes are always
contained by a figure object. Axes themselves contain the graphics objects that represent
data.

Axes control many aspects of how MATLAB displays graphical information.

Graphics Features Controlled by Axes

Much of what you can customize in a graph is controlled by axes properties.

• Axis limits, orientation, and tick placement
• Axis scales (linear or logarithmic)
• Grid control
• Font characteristics for the title and axis labels.
• Default line colors and line styles for multiline graphs
• Axis line and grid control

 Features Controlled by Graphics Objects

12-9

• Color scaling of objects based on colormap
• View and aspect ratio
• Clipping graphs to axis limits
• Controlling axes resize behavior
• Lighting and transparency control

For a list of all axes properties, see Axes Properties

Objects That Represent Data

Data objects are the lines, images, text, and polygons that graphs use to represent data.
For example:

• Lines connect data points using specified x- and y-coordinates.
• Markers locate scattered data in some range of values.
• Rectangular bars indicate distribution of values in a histogram.

Because there are many kinds of graphs, there are many types of data objects. Some are
general purpose, such as lines and rectangles and some are highly specialized, such as
errorbars, colorbars, and legends.

Graphics Features Controlled by Data Objects

Data object properties control the appearance of the object and also contain the data that
defines the object. Data object properties can also control certain behaviors.

• Data — Change the data to update the graph. Many data objects can link their data
properties to workspace variables that contain the data.

• Color Data — Objects can control how data maps to colors by specifying color data.
• Appearance — Specify colors of line, markers, polygon faces as well as line styles,

marker types.
• Specific behaviors — Properties can control how the object interprets or displays its

data. For example, Bar objects have a property called BarLayout that determines
if the bars are grouped or stacked. Contour objects have a LevelList property that
specifies the contour intervals at which to draw contour lines.

12 Graphics Objects

12-10

High-Level vs. Low-Level Functions

Plotting functions create data objects in one of two ways:

• High-level functions — Create complete graphs that replace existing graphs with new
ones. High-level functions include plot, bar, scatter, and so on. For a summary of
high-level functions, see “Types of MATLAB Plots” on page 1-2.

• Low-level functions — Add graphics objects with minimal changes to the existing
graph. Low-level functions include line, patch, rectangle, surface, text, image,
and light.

Group Objects

Group objects enable you to treat a number of data objects as one entity. For example,
you can make the entire group visible or invisible, select all objects when only one is
clicked, or apply a transform matrix to rotate, translate, or scale all the objects in the
group.

This code parents the plotted lines to the group object returned by the hggroup function.
The text object is not part of the group.

y = magic(5);

hg = hggroup;

plot(y,'Parent',hg)

text(2.5,10,'Plot of 5x5 magic square')

 Features Controlled by Graphics Objects

12-11

Annotation Objects

Annotation objects comprise arrows, text boxes, and combinations of both. Annotation
objects have special features that overcome the limitations of data objects used to
annotate graphs:

• Annotation objects are children of the figure.
• You can easily locate annotations anywhere in the figure.
• Define the location of annotation objects in normalized figure coordinates: lower left

= (0,0), upper right = (1,1), making their placement independent of range of data
represented by the axes.

12 Graphics Objects

12-12

Note: MATLAB parents annotation objects to a special layer. Do not attempt to
parent objects to this layer. MATLAB automatically assigns annotation objects to the
appropriate parent.

13

Group Objects

• “Object Groups” on page 13-2
• “Create Object Groups” on page 13-3
• “Transforms Supported by hgtransform” on page 13-5
• “Rotate About an Arbitrary Axis” on page 13-10
• “Nest Transforms for Complex Movements” on page 13-14

13 Group Objects

13-2

Object Groups

Group objects are invisible containers for graphics objects. Use group objects to form
a collection of objects that can behave as one object in certain respects. When you set
properties of the group object, the result applies to the objects contained in the group.

For example, you can make the entire group visible or invisible, select all objects when
only one is clicked, or apply a transform matrix to reposition the objects.

Group objects can contain any of the objects that axes can contain, such as lines,
surfaces, text, and so on. Group objects can also contain other group objects. Group
objects are always parented to an axes object or another group object.

There are two kinds of group objects:

• Group — Use when you want to create a group of objects and control the visibility or
selectability of the group based on what happens to any individual object in the group.
Create group objects with the hggroup function.

• Transform — Use when you want to transform a group of objects. Transforms include
rotation, translation, and scaling. For an example, see “Nest Transforms for Complex
Movements” on page 13-14. Create transform objects with the hgtransform
function.

The difference between the group and transform objects is that the transform object
can apply a transform matrix (via its Matrix property) to all objects for which it is the
parent.

 Create Object Groups

13-3

Create Object Groups

In this section...

“Parent Specification” on page 13-4
“Visible and Selected Properties of Group Children” on page 13-4

Create an object group by parenting objects to a group or transform object. For example,
call hggroup to create a group object and save its handle. Assign this group object as the
parent of subsequently created objects:

hg = hggroup;

plot(rand(5),'Parent',hg)

text(3,0.5,'Random lines','Parent',hg)

Setting the visibility of the group to off makes the line and text objects it contains
invisible.

hg.Visible = 'off';

You can add objects to a group selectively. For example, the following call to the bar
function returns the handles to five separate bar objects:

hb = bar(randn(5))

hb =

 1x5 Bar array:

 Bar Bar Bar Bar Bar

Parent the third, fourth, and fifth bar object to the group:

hg = hggroup;

set(hb(3:5),'Parent',hg)

Group objects can be the parent of any number of axes children, including other group
objects. For examples, see “Rotate About an Arbitrary Axis” on page 13-10 and “Nest
Transforms for Complex Movements” on page 13-14.

13 Group Objects

13-4

Parent Specification

Plotting functions clear the axes before generating their graph. However, if you assign a
group or transform as the Parent in the plotting function, the group or transform object
is not cleared.

For example:

hg = hggroup;

hb = bar(randn(5));

set(hb,'Parent',hg)

Error using matlab.graphics.chart.primitive.Bar/set

Cannot set property to a deleted object

The bar function cleared the axes. However, if you set the Parent property as a name/
value pair in the bar function arguments, the bar function does not delete the group:

hg = hggroup;

hb = bar(randn(5),'Parent',hg);

Visible and Selected Properties of Group Children

Setting the Visible property of a group or transform object controls whether all
the objects in the group are visible or not visible. However, changing the state of the
Visible property for the group object does not change the state of this property for the
individual objects. The values of the Visible property for the individual objects are
preserved.

For example, if the Visible property of the group is set to off and subsequently set to
on, only the objects that were originally visible are displayed.

The same behavior applies to the Selected and SelectionHighlight properties. The
children of the group or transform object show the state of the containing object
properties without actually changing their own property values.

 Transforms Supported by hgtransform

13-5

Transforms Supported by hgtransform

In this section...

“Transforming Objects” on page 13-5
“Rotation” on page 13-5
“Translation” on page 13-6
“Scaling” on page 13-6
“The Default Transform” on page 13-7
“Disallowed Transforms: Perspective” on page 13-7
“Disallowed Transforms: Shear” on page 13-7
“Absolute vs. Relative Transforms” on page 13-8
“Combining Transforms into One Matrix” on page 13-8
“Undoing Transform Operations” on page 13-9

Transforming Objects

The transform object's Matrix property applies a transform to all the object’s children in
unison. Transforms include rotation, translation, and scaling. Define a transform with a
four-by-four transformation matrix.

Creating a Transform Matrix

The makehgtform function simplifies the construction of matrices to perform rotation,
translation, and scaling. For information on creating transform matrices using
makehgtform, see “Nest Transforms for Complex Movements” on page 13-14.

Rotation

Rotation transforms follow the right-hand rule — rotate objects about the x-, y-, or z-axis,
with positive angles rotating counterclockwise, while sighting along the respective axis
toward the origin. If the angle of rotation is theta, the following matrix defines a rotation
of theta about the x-axis.

13 Group Objects

13-6

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

q q

q q

x x

x x

−

To create a transform matrix for rotation about an arbitrary axis, use the makehgtform
function.

Translation

Translation transforms move objects with respect to their current locations. Specify the
translation as distances tx, ty, and tz in data space units. The following matrix shows the
location of these elements in the transform matrix.

1 0 0

0 1 0

0 0 1

0 0 0 1

t

t

t

x

y

z

Scaling

Scaling transforms change the sizes of objects. Specify scale factors sx, sy, and sz and
construct the following matrix.

s

s

s

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1

You cannot use scale factors less than or equal to zero.

 Transforms Supported by hgtransform

13-7

The Default Transform

The default transform is the identity matrix, which you can create with the eye function.
Here is the identity matrix.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

See “Undoing Transform Operations” on page 13-9.

Disallowed Transforms: Perspective

Perspective transforms change the distance at which you view an object. The following
matrix is an example of a perspective transform matrix, which MATLAB graphics does
not allow.

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0p
x

In this case, py is the perspective factor.

Disallowed Transforms: Shear

Shear transforms keep all points along a given line (or plane, in 3-D coordinates)
fixed while shifting all other points parallel to the line (plane) proportional to their
perpendicular distance from the fixed line (plane). The following matrix is an example of
a shear transform matrix, which hgtransform does not allow.

13 Group Objects

13-8

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

s
x

In this case, sx is the shear factor and can replace any zero element in an identity matrix.

Absolute vs. Relative Transforms

Transforms are specified in absolute terms, not relative to the current transform. For
example, if you apply a transform that translates the transform object 5 units in the
x direction, and then you apply another transform that translates it 4 units in the y
direction, the resulting position of the object is 4 units in the y direction from its original
position.

If you want transforms to accumulate, you must concatenate the individual transforms
into a single matrix. See “Combining Transforms into One Matrix” on page 13-8.

Combining Transforms into One Matrix

It is usually more efficient to combine various transform operations into one matrix by
concatenating (multiplying) the individual matrices and setting the Matrix property to
the result. Matrix multiplication is not commutative, so the order in which you multiply
the matrices affects the result.

For example, suppose you want to perform an operation that scales, translates, and
then rotates. Assuming R, T and S are your individual transform matrices, multiply the
matrices as follows:

C = R*T*S % operations are performed from right to left

S is the scaling matrix, T is the translation matrix, R is the rotation matrix, and C is the
composite of the three operations. Then set the transform object's Matrix property to C:

hg = hgtransform('Matrix',C);

Multiplying the Transform by the Identity Matrix

The following sets of statements are not equivalent. The first set:

 Transforms Supported by hgtransform

13-9

hg.Matrix = C;

hg.Matrix = eye(4);

results in the removal of the transform C. The second set:

I = eye(4);

C = I*R*T*S;

hg.Matrix = C;

applies the transform C. Concatenating the identity matrix to other matrices has no
effect on the composite matrix.

Undoing Transform Operations

Because transform operations are specified in absolute terms (not relative to the current
transform), you can undo a series of transforms by setting the current transform to the
identity matrix. For example:

hg = hgtransform('Matrix',C);

...

hg.Matrix = eye(4);

returns the objects contained by the transform object, hg, to their orientation before
applying the transform C.

13 Group Objects

13-10

Rotate About an Arbitrary Axis

This example shows how to rotate an object about an arbitrary axis.

In this section...

“Translate to Origin Before Rotating” on page 13-10
“Rotate Surface” on page 13-10

Translate to Origin Before Rotating

Rotations are performed about the origin. Therefore, you need to perform a translation so
that the intended axis of rotation is temporarily at the origin. After applying the rotation
transform matrix, you then translate the object back to its original position.

Rotate Surface

This example shows how to rotate a surface about the y-axis.

Create Surface and Hgtransform

Parent the surface to the hgtransform.

t = hgtransform;

surf(peaks(40),'Parent',t)

view(-20,30)

axis manual

 Rotate About an Arbitrary Axis

13-11

Create Transform

Set a y-axis rotation matrix to rotate the surface by -15 degrees.

ry_angle = -15*pi/180;

Ry = makehgtform('yrotate',ry_angle);

t.Matrix = Ry;

13 Group Objects

13-12

The surface rotated -15 degrees about the y-axis that passes through the origin.

Translate the Surface and Rotate

Now rotate the surface about the y-axis that passes through the point x = 20.

Create two translation matrices, one to translate the surface -20 units in x and another
to translate 20 units back. Concatenate the two translation matrices with the rotation
matrix in the correct order and set the transform.

Tx1 = makehgtform('translate',[-20 0 0]);

Tx2 = makehgtform('translate',[20 0 0]);

t.Matrix = Tx2*Ry*Tx1;

 Rotate About an Arbitrary Axis

13-13

13 Group Objects

13-14

Nest Transforms for Complex Movements

This example creates a nested hierarchy of hgtransform objects, which are then
transformed in sequence to create a cube from six squares. The example illustrates how
you can parent hgtransform objects to other hgtransform objects to create a hierarchy,
and how transforming members of a hierarchy affects subordinate members.

Here is an illustration of the hierarchy.

 Nest Transforms for Complex Movements

13-15

13 Group Objects

13-16

The transform_foldbox function implements the transform hierarchy. The
doUpdate function renders each step. Place both functions in a .m file and execute
transform_foldbox.

function transform_foldbox

 % Create six square and fold

 % them into a cube

 figure

 % Set axis limits and view

 axes('Projection','perspective',...

 'XLim',[0 4],...

 'YLim',[0 4],...

 'ZLim',[0 3])

 view(3); axis equal; grid on

 % Create a hierarchy of hgtransforms

 t(1) = hgtransform;

 t(2) = hgtransform('parent',t(1));

 t(3) = hgtransform('parent',t(2));

 t(4) = hgtransform('parent',t(3));

 t(5) = hgtransform('parent',t(4));

 t(6) = hgtransform('parent',t(5));

 % Patch data

 X = [0 0 1 1];

 Y = [0 1 1 0];

 Z = [0 0 0 0];

 % Text data

 Xtext = .5;

 Ytext = .5;

 Ztext = .15;

 % Corresponding pairs of objects (patch and text)

 % are parented into the object hierarchy

 p(1) = patch('FaceColor','red','Parent',t(1));

 txt(1) = text('String','Bottom','Parent',t(1));

 p(2) = patch('FaceColor','green','Parent',t(2));

 txt(2) = text('String','Right','Parent',t(2));

 p(3) = patch('FaceColor','blue','Parent',t(3));

 txt(3) = text('String','Back','Color','white','Parent',t(3));

 p(4) = patch('FaceColor','yellow','Parent',t(4));

 Nest Transforms for Complex Movements

13-17

 txt(4) = text('String','Top','Parent',t(4));

 p(5) = patch('FaceColor','cyan','Parent',t(5));

 txt(5) = text('String','Left','Parent',t(5));

 p(6) = patch('FaceColor','magenta','Parent',t(6));

 txt(6) = text('String','Front','Parent',t(6));

 % All the patch objects use the same x, y, and z data

 set(p,'XData',X,'YData',Y,'ZData',Z)

 % Set the position and alignment of the text objects

 set(txt,'Position',[Xtext Ytext Ztext],...

 'HorizontalAlignment','center',...

 'VerticalAlignment','middle')

 % Display the objects in their current location

 doUpdate(1)

 % Set up initial translation transforms

 % Translate 1 unit in x

 Tx = makehgtform('translate',[1 0 0]);

 % Translate 1 unit in y

 Ty = makehgtform('translate',[0 1 0]);

 % Translate the unit squares to the desired locations

 % The drawnow and pause commands display

 % the objects after each translation

 set(t(2),'Matrix',Tx);

 doUpdate(1)

 set(t(3),'Matrix',Ty);

 doUpdate(1)

 set(t(4),'Matrix',Tx);

 doUpdate(1)

 set(t(5),'Matrix',Ty);

 doUpdate(1)

 set(t(6),'Matrix',Tx);

 doUpdate(1)

 % Specify rotation angle (pi/2 radians = 90 degrees)

 fold = pi/2;

 % Rotate -y, translate x

 Ry = makehgtform('yrotate',-fold);

 RyTx = Tx*Ry;

13 Group Objects

13-18

 % Rotate x, translate y

 Rx = makehgtform('xrotate',fold);

 RxTy = Ty*Rx;

 % Set the transforms

 % Draw after each group transform and pause

 set(t(6),'Matrix',RyTx);

 doUpdate(1)

 set(t(5),'Matrix',RxTy);

 doUpdate(1)

 set(t(4),'Matrix',RyTx);

 doUpdate(1)

 set(t(3),'Matrix',RxTy);

 doUpdate(1)

 set(t(2),'Matrix',RyTx);

 doUpdate(1)

end

function doUpdate(delay)

 drawnow

 pause(delay)

end

14

Control Legend Content

14 Control Legend Content

14-2

Control Legend Content

In this section...

“Properties for Controlling Legend Content” on page 14-2
“Updating a Legend” on page 14-3

Properties for Controlling Legend Content

Graphics objects have two properties that control these options:

• Annotation — Controls whether the graphics object appears in the legend and
determines if the object or its children appear in the legend.

• DisplayName — Specifies the text label used by the legend for the object. However,
specifying a string with the legend commands resets the value of DisplayName
property.

Accessing the Annotation Control Objects

hg.Annotation

LegendInformation
property

hg.LegendEntry

IconDisplayStyle
property

graphics object

Annotation
property

Control how graphic object
is displayed in legend

Querying the Annotation property returns the handle of an hg.Annotation object.
The hg.Annotation object has a property called LegendInformation, which contains
an hg.LegendEntry object. The hg.LegendEntry object has a property called
IconDisplayStyle that you can set to one of three values.

IconDisplayStyle Value Behavior

on Represent this object in a figure legend.
off Do not include this object in a figure legend .
children Display legend entries for this object's children and not

the object itself (applies only to objects that have children,
otherwise, the same as on).

For example, if object_handle is the handle of a graphics object, use the following
statements to set the object's IconDisplayStyle. In this case, the graphics object,

 Control Legend Content

14-3

object_handle, is not included in the legend because its IconDisplayStyle property
is off.

hAnnotation = get(object_handle,'Annotation');

hLegendEntry = get(hAnnotation','LegendInformation');

set(hLegendEntry,'IconDisplayStyle','off')

Updating a Legend

If a legend exists and you change its IconDisplayStyle setting, you must call legend
to update the display. See the legend command for the options available.

14-4

15

Working with Graphics Objects

• “Graphics Object Handles” on page 15-2
• “Preallocate Arrays” on page 15-4
• “Test for Valid Handle” on page 15-5
• “Handles in Logical Expressions” on page 15-6
• “Graphics Arrays” on page 15-9

15 Working with Graphics Objects

15-2

Graphics Object Handles

In this section...

“What You Can Do with Handles” on page 15-2
“What You Cannot Do with Handles” on page 15-3

What You Can Do with Handles

A handle refers to a specific instance of a graphics object. Use the object handle to set and
query the values of the object properties.

When you create graphics objects, you can save the handle to the object in a variable. For
example:

x = 1:10;

y = x.^2;

plot(x,y);

h = text(5,25,'*(5,25)');

The variable h refers to this particular text object '*(5,25)', which is located at the
point 5,25. Use the handle h to query and set the properties of this text object.

Set font size

h.FontSize = 12;

Get font size

h.FontSize

ans =

 12

Make a copy of the variable h. The copy refers to the same object. For example, the
following statements create a copy of the handle, but not the object:

hNew = h;

hNew.FontAngle = 'italic';

h.FontAngle

ans =

 Graphics Object Handles

15-3

italic

What You Cannot Do with Handles

Handles variables are objects. Do not attempt to perform operations involving handles
that convert the handles to a numeric, character, or any other type. For example, you
cannot:

• Perform arithmetic operations on handles.
• Use handles directly in logical statements without converting to a logical value.
• Rely on the numeric values of figure handles (integers) in logical statements.
• Combine handles with data in numeric arrays.
• Convert handles to strings or use handles in string operations.

More About
• “Graphics Arrays” on page 15-9
• “Dominant Argument in Overloaded Plotting Functions”

15 Working with Graphics Objects

15-4

Preallocate Arrays

Use the gobjects function to preallocate arrays for graphics objects. You can fill in each
element in the array with a graphics object handle.

Preallocate a 4-by-1 array:

h = gobjects(4,1);

Assign axes handles to the array elements:

for k=1:4

 h(k) = subplot(2,2,k);

end

gobjects returns a GraphicsPlaceholder array. You can replace these placeholders
elements with any type of graphics object. You must use gobjects to preallocate
graphics object arrays to ensure compatibility among all graphics objects that are
assigned to the array.

 Test for Valid Handle

15-5

Test for Valid Handle

Use isgraphics to determine if a variable is a valid graphics object handle. A handle
variable (h in this case) can still exist, but not be a valid handle if the object to which it
refers has been deleted.

h = plot(1:10);

...

close % Close the figure containing the plot

whos

Name Size Bytes Class Attributes

 h 1x1 104 matlab.graphics.chart.primitive.Line

Test the validity of h:

isgraphics(h)

ans =

 0

For more information on deleted handles, see “Deleted Handle Objects”.

15 Working with Graphics Objects

15-6

Handles in Logical Expressions

In this section...

“If Handle Is Valid” on page 15-6
“If Result Is Empty” on page 15-6
“If Handles Are Equal” on page 15-7

Handle objects do not evaluate to logical true or false. You must use the function that
tests for the state of interest and returns a logical value.

If Handle Is Valid

Use isgraphics to determine if a variable contains a valid graphics object handle. For
example, suppose hobj is a variable in the workspace. Before operating on this variable,
test its validity:

if isgraphics(hobj)

 ...

end

You can also determine the type of object:

if isgraphics(hobj,'figure')

 ...% hobj is a figure handle

end

If Result Is Empty

You cannot use empty objects directly in logical statements. Use isempty to return a
logical value that you can use in logical statements.

Some properties contain the handle to other objects. In cases where the other object does
not exist, the property contains an empty object:

close all

hRoot = groot;

hRoot.CurrentFigure

ans =

 Handles in Logical Expressions

15-7

0x0 empty GraphicsPlaceholder array.

For example, to determine if there is a current figure by querying the root
CurrentFigure property, use the isempty function:

hRoot = groot;

if ~isempty(hRoot.CurrentFigure)

 ... % There is a current fgiure

end

Another case where code can encounter an empty object is when searching for handles.
For example, suppose you set a figure’s Tag property with the string myFigure and you
use findobj to get the handle of this figure:

if isempty(findobj('Tag','myFigure'))

 ... % That figure was NOT found

end

findobj returns an empty object if there is no match.

If Handles Are Equal

There are two states of being equal for handles:

• Any two handles refer to the same object (test with ==).
• The objects referred to by any two handles are the same class, and all properties have

the same values (test with isequal).

Suppose you want to determine if h is a handle to a particular figure that has a value of
myFigure for its Tag property:

if h == findobj('Tag','myFigure')

 ...% h is correct figure

end

If you want to determine if different objects are in the same state, use isequal:

hLine1 = line;

hLine2 = line;

isequal(hLine1,hLine2)

ans =

15 Working with Graphics Objects

15-8

 1

 Graphics Arrays

15-9

Graphics Arrays

Graphics arrays can contain the handles of any graphics objects. For example, this call to
the plot function returns an array containing five line object handles:

y = rand(20,5);

h = plot(y)

h =

 5x1 Line array:

 Line

 Line

 Line

 Line

 Line

This array contains only handles to line objects. However, graphics arrays can contain
more than one type of graphics object. That is, graphics arrays can be heterogeneous.

For example, you can concatenate the handles of the figure, axes, and line objects into
one array, harray:

hf = figure;

ha = axes;

hl = plot(1:10);

harray = [hf,ha,hl]

harray =

 1x3 graphics array:

 Figure Axes Line

Graphics arrays follow the same rules as any MATLAB array. For example, array
element dimensions must agree. In this code, plot returns a 5-by-1 Line array:

hf = figure;

ha = axes;

hl = plot(rand(5));

harray = [hf,ha,hl];

Error using horzcat

Dimensions of matrices being concatenated are not consistent.

15 Working with Graphics Objects

15-10

To form an array, you must transpose hl:

harray = [hf,ha,hl']

harray =

 1x7 graphics array:

 Figure Axes Line Line Line Line Line

You cannot concatenate numeric data with object handles, with the exception of the
unique identifier specified by the figure Number property. For example, if there is an
existing figure with its Number property set to 1, you can refer to that figure by this
number:

figure(1)

aHandle = axes;

[aHandle,1]

ans =

 1x2 graphics array:

 Axes Figure

The same rules for array formation apply to indexed assignment. For example, you can
build a handle array with a for loop:

harray = gobjects(1,7);

hf = figure;

ha = axes;

hl = plot(rand(5));

harray(1) = hf;

harray(2) = ha;

for k = 1:length(hl)

 harray(k+2) = hl(k);

end

16

Object Identification

• “Special Object Identifiers” on page 16-2
• “Find Objects” on page 16-5
• “Copy Objects” on page 16-11
• “Delete Graphics Objects” on page 16-14

16 Object Identification

16-2

Special Object Identifiers

In this section...

“Getting Handles to Special Objects” on page 16-2
“The Current Figure, Axes, and Object” on page 16-2
“Callback Object and Callback Figure” on page 16-4

Getting Handles to Special Objects

MATLAB provides functions that return important object handles so that you can obtain
these handles whenever you require them.

These object include:

• Current figure — Handle of the figure that is the current target for graphics
commands.

• Current axes— Handle of the axes in the current figure that is the target for graphics
commands.

• Current object — Handle of the object that is selected
• Callback object — Handle of the object whose callback is executing.
• Callback figure — Handle of figure that is the parent of the callback object.

The Current Figure, Axes, and Object

An important concept in MATLAB graphics is that of being the current object. Being
current means that object is the target for any action that affects objects of that type.
There are three objects designated as current at any point in time:

• The current figure is the window designated to receive graphics output.
• The current axes is the axes in which plotting functions display graphs.
• The current object is the most recent object created or selected.

MATLAB stores the three handles corresponding to these objects in the ancestor's
corresponding property.

 Special Object Identifiers

16-3

Root
Current Figure

Current Axes

Current Object

CurrentFigure CurrentAxes

CurrentObject

These properties enable you to obtain the handles of these key objects:

hRoot = groot;

hFigure = hRoot.CurrentFigure;

hAxes = hFigure.CurrentAxes;

hobj = hFigure.CurrentObject;

Convenience Functions

The following commands are shorthand notation for the property queries.

• gcf — Returns the value of the root CurrentFigure property or creates a figure if
there is no current figure. A figure with its HandleVisibility property set to off
cannot become the current figure.

• gca — Returns the value of the current figure's CurrentAxes property or creates an
axes if there is no current axes. An axes with its HandleVisibility property set to
off cannot become the current axes.

• gco — Returns the value of the current figure's CurrentObject property.

Use these commands as input arguments to functions that require object handles. For
example, you can click a line object and then use gco to specify the handle to the set
command,

set(gco,'Marker','square')

or click in an axes to set an axes property:

set(gca,'Color','black')

You can get the handles of all the graphic objects in the current axes (except those with
hidden handles):

h = get(gca,'Children');

16 Object Identification

16-4

and then determine the types of the objects:

get(h,'Type')

ans =

 'text'

 'patch'

 'surface'

 'line'

While gcf and gca provide a simple means of obtaining the current figure and axes
handles, they are less useful in code files. Especially true if your code is part of an
application layered on MATLAB where you do not have knowledge of user actions that
can change these values.

For information on how to prevent users from accessing the handles of graphics objects
that you want to protect, see “Prevent Access to Figures and Axes” on page 9-14.

Callback Object and Callback Figure

Callback functions often require information about the object that defines the callback or
the figure that contains the objects whose callback is executing. To obtain handles, these
objects, use these convenience functions:

• gcbo — Returns the value of the Root CallbackObject property. This property
contains the handle of the object whose callback is executing. gcbo optionally returns
the handle of the figure containing the callback object.

• gcbf — Returns the handle of the figure containing the callback object.

MATLAB keeps the value of the CallbackObject property in sync with the currently
executing callback. If one callback interrupts an executing callback, MATLAB updates
the value of CallbackObject property.

When writing callback functions for the CreateFcn and DeleteFcn, always use gcbo to
reference the callback object

For more information on writing callback functions, see “Callback Definition” on page
11-4

 Find Objects

16-5

Find Objects

In this section...

“Find Objects with Specific Property Values” on page 16-5
“Find Text by String Property” on page 16-5
“Use Regular Expressions with findobj” on page 16-7
“Limit Scope of Search” on page 16-9

Find Objects with Specific Property Values

The findobj function can scan the object hierarchy to obtain the handles of objects that
have specific property values.

For identification, all graphics objects have a Tag property that you can set to any string.
You can then search for the specific property/value pair. For example, suppose you create
a check box that is sometimes inactivated in the UI. By assigning a unique value for the
Tag property, you can find that particular object:

uicontrol('Style','checkbox','Tag','save option')

Use findobj to locate the object whose Tag property is set to 'save option' and
disable it:

hCheckbox = findobj('Tag','save option');

hCheckbox.Enable = 'off'

If you do not specify a starting object, findobj searches from the root object, finding all
occurrences of the property name/property value combination that you specify.

To find objects with hidden handles, use findall.

Find Text by String Property

This example shows how to find the handles of text objects using the text string.

The following graph contains text objects labeling particular values of the function.

16 Object Identification

16-6

Suppose that you want to move the text string labeling the value sin(t) = .707 from its
current location at [pi/4,sin(pi/4)] to the point [3*pi/4,sin(3*pi/4)] where the
function has the same value (shown in light gray out in the graph).

Determine the handle of the text object labeling the point [pi/4,sin(pi/4)] and
change its Position property.

To use findobj, pick a property value that uniquely identifies the object. This example
uses the text String property:

hText = findobj('String','\leftarrowsin(t) = .707');

Move the object to the new position, defining the text Position in axes units.

 Find Objects

16-7

hText.Position = [3*pi/4,sin(3*pi/4),0];

findobj lets you restrict the search by specifying a starting point in the hierarchy,
instead of beginning with the root object. If there are many objects in the object tree, this
capability results in faster searches. In the previous example, you know the text object of
interest is in the current axes, so you can type:

hText = findobj(gca,'String','\leftarrowsin(t) = .707');

Use Regular Expressions with findobj

This example shows how to find object handles using regular expressions to identify
specific property values. For more information about regular expressions, see regexp.

Suppose you create the following graph and want to modify certain properties of the
objects created.

x = 0:30;

y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';

h = stem(x,y);

h(1).Marker = 'o';

h(1).Tag = 'Decaying Exponential';

h(2).Marker = 'square';

h(2).Tag = 'Growing Exponential';

h(3).Marker = '*';

h(3).Tag = 'Steady State';

16 Object Identification

16-8

Passing a regular expression to findobj enables you to match very specific patterns. For
example, suppose you want to set the value of the MarkerFaceColor property to green
on all stem objects that do not have their Tag property set to 'Steady State' (that is,
stems that represent decaying and growing exponentials).

hStems = findobj('-regexp','Tag','^(?!Steady State$).');

for k = 1:length(hStems)

 hStems(k).MarkerFaceColor = 'green'

end

 Find Objects

16-9

Limit Scope of Search

Specify the starting point in the object tree to limit the scope of the search. The starting
point can be the handle of a figure, axes, or a group of object handles.

For example, suppose you want to change the marker face color of the stems in a specific
axes:

x = 0:30;

y = [1.5*cos(x);4*exp(-.1*x).*cos(x);exp(.05*x).*cos(x)]';

ax(1) = subplot(3,1,1);

stem(x,y(:,1))

ax(2) = subplot(3,1,2);

stem(x,y(:,2))

ax(3) = subplot(3,1,3);

stem(x,y(:,3))

Set the marker face color of the stems in the third axes only.

h = findobj(ax(3),'Type','stem');

h.MarkerFaceColor = 'red';

16 Object Identification

16-10

For more information on limiting the scope and depth of an object search, see findobj
and findall.

 Copy Objects

16-11

Copy Objects

In this section...

“Copying Objects with copyobj” on page 16-11
“Copy Single Object to Multiple Destinations.” on page 16-11
“Copying Multiple Objects” on page 16-12

Copying Objects with copyobj

Copy objects from one parent to another using the copyobj function. The copy differs
from the original:

• The Parent property is now the new parent.
• The copied object’s handle is different from the original.
• copyobj does not copy the original object’s callback properties
• copyobj does not copy any application data associated with the original object.

Therefore, == and isequal return false when comparing original and new handles.

You can copy a number of objects to a new parent, or one object to a number of new
parents, as long as the result maintains the correct parent/child relationship. When you
copy an object having child objects, MATLAB copies all children too.

Note: You cannot copy the same object more than once to the same parent in a single call
to copyobj.

Copy Single Object to Multiple Destinations.

When copying a single object to multiple destinations, the new handles returned by
copyobj are in the same order as the parent handles.

h = copyobj(cobj,[newParent1,newParent2,newParent3])

The returned array h contains the new object handles in the order shown:

 h(1) -> newParent1

 h(2) -> newParent2

 h(3) -> newParent3

16 Object Identification

16-12

Copying Multiple Objects

This example shows how to copy multiple objects to a single parent.

Suppose you create a set of similar graphs and want to label the same data point on each
graph. You can copy the text and marker objects used to label the point in the first graph
to each subsequent graph.

Create and label the first graph:

x = 0:.1:2*pi;

plot(x,sin(x))

hText = text('String','\{5\pi\div4, sin(5\pi\div4)\}\rightarrow',...

 'Position',[5*pi/4,sin(5*pi/4),0],...

 'HorizontalAlignment','right');

hMarker = line(5*pi/4,sin(5*pi/4),0,'Marker','*');

Create two more graphs without labels:

figure

x = pi/4:.1:9*pi/4;

plot(x,sin(x))

hAxes1 = gca;

figure

x = pi/2:.1:5*pi/2;

plot(x,sin(x))

hAxes2 = gca;

Copy the text and marker (hText and hMarker) to each graph by parenting them to the
respective axes. Return the new handles for the text and marker copies:

newHandles1 = copyobj([hText,hMarker],hAxes1);

newHandles2 = copyobj([hText,hMarker],hAxes2);

Because the objective is to copy both objects to each axes, you must call copyobj twice,
each time with a single destination axes.

Copy Multiple Objects to Multiple Destinations

When you call copyobj with multiple objects to copy and multiple parent destinations,
copyobj copies respective objects to respective parents. That is, if h and p are handle
arrays of length n, then this call to copyobj:

 Copy Objects

16-13

copyobj(h,p)

results in an element-by-element copy:

h(1) -> p(1);

h(2) -> p(2);

...

h(n) -> p(n);

16 Object Identification

16-14

Delete Graphics Objects

In this section...

“How to Delete Objects” on page 16-14
“Handles to Deleted Objects” on page 16-15

How to Delete Objects

You can remove a graphics object with the delete function, using the object's handle as
an argument. For example, delete the current axes, and all the objects contained in the
axes, with the statement:

delete(gca)

If you want to delete multiple objects, pass an array of handles to delete as a single
argument. For example, if h1, h2, and h3 are handles to objects that you want to delete,
for a single array:

hToDelete = [h1,h2,h3];

delete(hToDelete)

Closing a figure deletes all the objects contained in the figure. For example, create a bar
graph:

f = figure;

y = rand(1,5);

bar(y)

The figure now contains axes and bar objects:

ax = f.Children;

b = ax.Children;

whos

 Name Size Bytes Class Attributes

 ax 1x1 112 matlab.graphics.axis.Axes

 b 1x1 112 matlab.graphics.chart.primitive.Bar

 f 1x1 112 matlab.ui.Figure

 y 1x5 40 double

Close the figure:

 Delete Graphics Objects

16-15

close(f)

MATLAB deletes each object, but the handle variable still exists:

>>f

f =

 handle to deleted Figure

>> ax

ax =

 handle to deleted Axes

b

b =

 handle to deleted Bar

Handles to Deleted Objects

When you delete a graphics object, MATLAB does not delete the variable or variables
that contained the object handle. However, these variables become invalid handles
because the object they referred to no longer exists.

The handle to a deleted object no longer refers to a valid object. Use isgraphics to
determine the validity of a handle to a graphics object:

y = rand(1,5);

h = bar(y);

delete(h)

isgraphics(h)

ans =

 0

You can also use the isvalid method to determine if any handle variable is a valid
handle.

You cannot access properties with the invalid handle variable:

h.FaceColor

16 Object Identification

16-16

Invalid or deleted object.

To remove the variable, use clear:

clear h

For information on getting the handle of a valid object for which you have not saved a
handle variable, see “Find Objects” on page 16-5.

17

Optimize Performance of Graphics
Programs

• “Finding Code Bottlenecks” on page 17-2
• “What Affects Code Execution Speed” on page 17-4
• “Judicious Object Creation” on page 17-6
• “Avoid Repeated Searches for Objects” on page 17-8
• “Screen Updates” on page 17-10
• “Getting and Setting Properties” on page 17-12
• “Avoid Updating Static Data” on page 17-15
• “Animating Line Graphs” on page 17-17
• “Transforming Objects Efficiently” on page 17-18
• “Use Low-Level Functions for Speed” on page 17-19
• “Using drawnow Efficiently” on page 17-20
• “System Requirements for Graphics” on page 17-23
• “Workarounds for Older Graphics Hardware” on page 17-25

17 Optimize Performance of Graphics Programs

17-2

Finding Code Bottlenecks

Use the code profiler to determine which functions contribute the most time to execution
time. You can make performance improvements by reducing the execution times of your
algorithms and calculations wherever possible.

Once you have optimized your code, use the following techniques to reduce the overhead
of object creation and updating the display.

For example, suppose you are plotting 10-by-1000 element arrays using the myPlot
function:

function myPlot

 x = rand(10,1000);

 y = rand(10,1000);

 plot(x,y,'LineStyle','none','Marker','o','Color','b');

end

profile on

myPlot

profile viewer

When you profile this code, you see that most time is spent in the myPlot function:

Because the x and y arrays contain 1000 columns of data, the plot function creates 1000
line objects. In this case, you can achieve the same results by creating one line with
10000 data points:

function myPlot

 x = rand(10,1000);

 y = rand(10,1000);

 % Pass x and y as 1-by-1000 vectors

 plot(x(:),y(:),'LineStyle','none','Marker','o','Color','b');

end

profile on

myPlot

profile viewer

Object creation time is a major factor in this case:

 Finding Code Bottlenecks

17-3

You can often achieve improvements in execution speed by understanding how to avoid
or minimize inherently slow operations. For information on how to improve performance
using this tool, see the documentation for the profile function.

17 Optimize Performance of Graphics Programs

17-4

What Affects Code Execution Speed

In this section...

“Potential Bottlenecks” on page 17-4
“How to Improve Performance” on page 17-4

Potential Bottlenecks

Performance becomes an issue when working with large amounts of data and large
numbers of objects. In such cases, you can improve the execution speed of graphics code
by minimizing the effect of two factors that contribute to total execution time:

• Object creation — Adding new graphics objects to a scene.
• Screen updates — Updating the graphics model and sending changes to be rendered.

It is often possible to prevent these activities from dominating the total execution time of
a particular programming pattern. Think of execution time as being the sum of a number
of terms:

T execution time = T creating objects + T updating + (T calculations, etc)

The examples that follow show ways to minimize the time spent in object creation and
updating the screen. In the preceding expression, the execution time does not include
time spent in the actual rendering of the screen.

How to Improve Performance

Profile your code and optimize algorithms, calculation, and other bottlenecks that are
specific to your application. Then determine if the code is taking more time in object
creation functions or drawnow (updating). You can begin to optimize both operations,
beginning with the larger term in the total time equation.

Is your code:

• Creating new objects instead of updating existing objects? See “Judicious Object
Creation” on page 17-6.

• Updating an object that has some percentage of static data? See “Avoid Updating
Static Data” on page 17-15.

 What Affects Code Execution Speed

17-5

• Searching for object handles. See “Avoid Repeated Searches for Objects” on page
17-8.

• Rotating, translating, or scaling objects? See “Transforming Objects Efficiently” on
page 17-18.

• Querying and setting properties in the same loop? See “Getting and Setting
Properties” on page 17-12.

17 Optimize Performance of Graphics Programs

17-6

Judicious Object Creation

In this section...

“Object Overhead” on page 17-6
“Do Not Create Unnecessary Objects” on page 17-6
“Use NaNs to Simulate Multiple Lines” on page 17-7
“Modify Data Instead of Creating New Objects” on page 17-7

Object Overhead

Graphics objects are complex structures that store information (data and object
characteristics), listen for certain events to occur (callback properties), and can cause
changes to other objects to accommodate their existence (update to axes limits, and so
on). Therefore, creating an object consumes resources.

When performance becomes an important consideration, try to realize your objectives in
a way that consumes a minimum amount of resources.

You can often improve performance by following these guidelines:

• Do not create unnecessary objects
• Avoid searching the object hierarchy

Do Not Create Unnecessary Objects

Look for cases where you can create fewer objects and achieve the same results. For
example, suppose you want to plot a 10-by-1000 array of points showing only markers.

This code creates 1000 line objects:

x = rand(10,1000);

y = rand(10,1000);

plot(x,y,'LineStyle','none','Marker','.','Color','b');

Convert the data from 10-by-1000 to 1000-by-1. This code creates a graph that looks the
same, but creates only one object:

plot(x(:),y(:),'LineStyle','none','Marker','.','Color','b')

 Judicious Object Creation

17-7

Use NaNs to Simulate Multiple Lines

If coordinate data contains NaNs, MATLAB does not render those points. You can add
NaNs to vertex data to create line segments that look like separate lines. Place the NaNs
at the same element locations in each vector of data. For example, this code appears to
create three separate lines:

x = [0:10,NaN,20:30,NaN,40:50];

y = [0:10,NaN,0:10,NaN,0:10];

line(x,y)

Modify Data Instead of Creating New Objects

To view different data on what is basically the same graph, it is more efficient to update
the data of the existing objects (lines, text, etc.) rather than recreating the entire graph.

For example, suppose you want to visualize the effect on your data of varying certain
parameters.

1 Set the limits of any axis that can be determined in advance, or set the axis limits
modes to manual.

2 Recalculate the data using the new parameters.
3 Use the new data to update the data properties of the lines, text, etc. objects used in

the graph.
4 Call drawnow to update the figure (and all child objects in the figure).

For example, suppose you want to update a graph as data changes:

figure

z = peaks;

h = surf(z);

drawnow

zlim([min(z(:)), max(z(:))]);

for k = 1:50

 h.ZData = (0.01+sin(2*pi*k/20)*z);

 drawnow

end

17 Optimize Performance of Graphics Programs

17-8

Avoid Repeated Searches for Objects

When you search for handles, MATLAB must search the object hierarchy to find
matching handles, which is time-consuming. Saving handles that you need to access later
is a faster approach. Array indexing is generally faster than using findobj or findall.

This code creates 500 line objects and then calls findobj in a loop.

figure

ax = axes;

for ix=1:500

 line(rand(1,5),rand(1,5),'Tag',num2str(ix),'Parent',ax);

end

drawnow;

for ix=1:500

 h = findobj(ax,'Tag',num2str(ix));

 set(h,'Color',rand(1,3));

end

drawnow;

A better approach is to save the handles in an array and index into the array in the
second for loop.

figure

ax = axes;

h = gobjects(1,500);

for ix = 1:500

 h(ix) = line(rand(1,5),rand(1,5),'Tag',num2str(ix),'Parent',ax);

end

drawnow;

% Index into handle array

for ix=1:500

 set(h(ix),'Color',rand(1,3));

end

drawnow

Limit Scope of Search

If searching for handles is necessary, limit the number of objects to be searched by
specifying a starting point in the object tree. For example, specify the starting point as
the figure or axes containing the objects for which you are searching.

 Avoid Repeated Searches for Objects

17-9

Another way to limit the time expended searching for objects is to restrict the depth of
the search. For example, a 'flat' search restricts the search to the objects in a specific
handle array.

Use the findobj and findall functions to search for handles.

For more information, see “Find Objects”

17 Optimize Performance of Graphics Programs

17-10

Screen Updates

In this section...

“MATLAB Graphics System” on page 17-10
“Managing Updates” on page 17-11

MATLAB Graphics System

MATLAB graphics is implemented using multiple threads of execution. The following
diagram illustrates how the main and renderer threads interact during the update
process. The MATLAB side contains the graphics model, which describes the geometry
rendered by the graphics hardware. The renderer side has a copy of the geometry in its
own memory system. The graphics hardware can render the screen without blocking
MATLAB execution.

When the graphics model changes, these updates must be passed to the graphics
hardware. Sending updates can be a bottleneck because the graphics hardware does

 Screen Updates

17-11

not support all MATLAB data types. The update process must convert the data into the
correct form.

When geometry is in the graphics hardware memory, you can realize performance
advantages by using this data and minimizing the data sent in an update.

Managing Updates

Updates involve these steps:

• Collecting changes that require an update to the screen, such as property changes and
objects added.

• Updating dependencies within the graphics model.
• Sending these updates to the renderer.
• Waiting for the renderer to accept these updates before returning execution to

MATLAB.

You initiate an update by calling the drawnow function. drawnow completes execution
when the renderer accepts the updates, which can happen before the renderer completes
updating the screen.

Explicit Updates

During function execution, adding graphics objects to a figure or changing properties
of existing objects does not necessarily cause an immediate update of the screen. The
update process occurs when there are changes to graphics that need to be updated, and
the code:

• Calls drawnow, pause, figure, or other functions that effectively cause an update
(see drawnow).

• Queries a property whose value depends on other properties (see “Automatically
Calculated Properties” on page 17-12).

• Completes execution and returns control to the MATLAB prompt or debugger.

17 Optimize Performance of Graphics Programs

17-12

Getting and Setting Properties

In this section...

“Automatically Calculated Properties” on page 17-12
“Inefficient Cycles of Sets and Gets” on page 17-13
“Changing Text Extent to Rotate Labels” on page 17-14

Automatically Calculated Properties

Certain properties have dependencies on the value of other properties. MATLAB
automatically calculates the values of these properties and updates their values based on
the current graphics model. For example, axis limits affect the values used for axis ticks,
which, in turn, affect the axis tick labels.

When you query a calculated property, MATLAB performs an implicit drawnow to ensure
all property values are up to date before returning the property value. The query causes
a full update of all dependent properties and an update of the screen.

MATLAB calculates the values of certain properties based on other values on which that
property depends. For example, plotting functions automatically create an axes with axis
limits, tick labels, and a size appropriate for the plotted data and the figure size.

MATLAB graphics performs a full update, if necessary, before returning a value from a
calculated property to ensure the returned value is up to date.

Object Automatically Calculated Properties

Axes CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle

 Position, OuterPosition, TightInset
 XLim, YLim, ZLim
 XTick, YTick, ZTick, XMinorTick, YMinorTick, ZMinorTick
 XTickLabel, YTickLabel, ZTickLabel, TickDir
 SortMethod

Text Extent

 Getting and Setting Properties

17-13

Inefficient Cycles of Sets and Gets

When you set property values, you change the state of the graphics model and mark it as
needing to be updated. When you query an autocalculated property, MATLAB needs to
perform an update if the graphics model and graphics hardware are not in sync.

When you get and set properties in the same loop, you can create a situation where
updates are performed with every pass through the loop.

• The get causes an update.
• The set marks the graphics model as needing an update.

The cycle is repeated with each pass through the loop. It is better to execute all property
queries in one loop, then execute all property sets in another loop, as shown in the
following example.

This example gets and sets the text Extent property.

Code with Poor Performance Code with Better Performance
h = gobjects(1,500);

p = zeros(500,3);

for ix = 1:500

 h(ix) = text(ix/500,ix/500,num2str(ix));

end

drawnow

% Gets and sets in the same loop,

% prompting a full update at each pass

for ix = 1:500

 pos = get(h(ix),'Position');

 ext = get(h(ix),'Extent');

 p(ix,:) = [pos(1)+(ext(3)+ext(1)), ...

 pos(2)+ext(2)+ext(4),0];

 set(h(ix),'Position',p(ix,:))

end

drawnow

h = gobjects(1,500);

p = zeros(500,3);

for ix = 1:500

 h(ix) = text(ix/500,ix/500,num2str(ix));

end

drawnow

% Get and save property values

for ix=1:500

 pos = get(h(ix),'Position');

 ext = get(h(ix),'Extent');

 p(ix,:) = [pos(1)+(ext(3)+ext(1)), ...

 pos(2)+ext(2)+ext(4),0];

end

% Set the property values and

% call a drawnow after the loop

for ix=1:500

 set(h(ix),'Position',p(ix,:));

end

drawnow

This code performs poorly because:

• The Extent property depends on other
values, such as screen resolution, figure size,
and axis limits, so querying this property can
cause a full update.

The performance is better because this code:

• Queries all property values in one loop and
stores these values in an array.

• Sets all property values in a separate loop.
• Calls drawnow after the second loop finishes.

17 Optimize Performance of Graphics Programs

17-14

Code with Poor Performance Code with Better Performance

• Each set of the Position property makes a
full update necessary when the next get of
the Extent property occurs.

Changing Text Extent to Rotate Labels

In cases where you change the text Extent property to rotate axes labels, it is more
efficient to use the axes properties XTickLabelRotation, YTickLabelRotation, and
ZTickLabelRotation.

 Avoid Updating Static Data

17-15

Avoid Updating Static Data

If only a small portion of the data defining a graphics scene changes with each update of
the screen, you can improve performance by updating only the data that changes. The
following example illustrates this technique.

Code with Poor Performance Code with Better Performance

In this example, a marker moves along the
surface by creating both objects with each pass
through the loop.
[sx,sy,sz] = peaks(500);

nframes = 490;

for t = 1:nframes

 surf(sx,sy,sz,'EdgeColor','none')

 hold on

 plot3(sx(t+10,t),sy(t,t+10),...

 sz(t+10,t+10)+0.5,'o',...

 'MarkerFaceColor','red',...

 'MarkerSize',14)

 hold off

 drawnow

end

Create the surface, then update the XData,
YData, and ZData of the marker in the loop.
Only the marker data changes in each iteration.
[sx,sy,sz] = peaks(500);

nframes = 490;

surf(sx,sy,sz,'EdgeColor','none')

hold on

h = plot3(sx(1,1),sy(1,1),sz(1,1),'o',...

 'MarkerFaceColor','red',...

 'MarkerSize',14);

hold off

for t = 1:nframes

 set(h,'XData',sx(t+10,t),...

 'YData',sy(t,t+10),...

 'ZData',sz(t+10,t+10)+0.5)

 drawnow

end

Segmenting Data to Reduce Update Times

Consider the case where an object’s data grows very large while code executes in a loop,
such as a line tracing a signal over time.

With each call to drawnow, the updates are passed to the renderer. The performance
decreases as the data arrays grow in size. If you are using this pattern, adopt the
segmentation approach described in the example on the right.

Code with Poor Performance Code with Better Performance
% Grow data

figure('Position',[10,10,1500,400])

n = 5000;

h = stairs(1,1);

ax = gca;

ax.XLim = [1,n];

ax.YLim = [0,1];

ax.ZLim = [0,1];

% Segment data

figure('Position',[10,10,1500,400])

n = 5000;

seg_size = 500;

xd = 1:n;

yd = rand(1,n);

h = stairs(1,1);

ax = gca;

ax.XLim = [1,n];

17 Optimize Performance of Graphics Programs

17-16

Code with Poor Performance Code with Better Performance
ax.NextPlot = 'add';

xd = 1:n;

yd = rand(1,n);

tic

for ix = 1:n

 set(h,'XData',xd(1:ix),'YData',yd(1:ix));

 drawnow;

end

toc

ax.YLim = [0,1];

ax.ZLim = [0,1];

ax.NextPlot = 'add';

tic

start = 1;

for ix=1:n

 % Limit object size

 if (ix-start > seg_size)

 start = ix-1;

 h = stairs(1,1);

 end

 set(h,'XData',xd(start:ix),...

 'YData',yd(start:ix));

 % Update display in 50 point chunks

 if mod(ix,50) == 0

 drawnow;

 end

end

toc

The performance of this code is better because
the limiting factor is the amount of data sent
during updates.

 Animating Line Graphs

17-17

Animating Line Graphs

The matlab.graphics.animation.AnimatedLine class defines an object that is
designed specifically for animating line graphs. AnimatedLine objects provide a method
to add points to an existing object. This method provides data segmentation and accepts
vectors of points so that you can minimize the effects of the update.

Here is an example that uses an AnimatedLine object:

%% Segment with animatedline

figure('Position',[10,10,1000,400])

n = 10000;

axes('XLim',[1,n],'YLim',[0,1],'ZLim',[0,1]);

xd = 1:n;

yd = rand(1,n);

h = animatedline;

for ix = 1:50:n-50

 addpoints(h,xd(ix:ix+50),yd(ix:ix+50));

 drawnow update;

end

Interactive Lines with Markers

If you are creating lines that use many markers and you are clicking objects in the
same axes to, for example, execute a button down callback function, you can improve
performance by:

• Using the '.' (the dot) marker.
• Setting the PickableParts property to 'none' for all objects in the axes that you do

not want to capture mouse clicks.

17 Optimize Performance of Graphics Programs

17-18

Transforming Objects Efficiently

Moving objects, for example by rotation, requires transforming the data that defines
the objects. You can improve performance by taking advantage of the fact that graphics
hardware can apply transforms to the data. You can then avoid sending the transformed
data to the renderer. Instead, you send only the four-by-four transform matrix.

To realize the performance benefits of this approach, use the hgtransform container to
group the objects that you want to move.

The following examples define a sphere and rotate it using two techniques to compare
performance:

• The rotate function transforms the sphere’s data and sends the data to the renderer
thread with each call to drawnow.

• The hgtransform sends the transform matrix for the same rotation to the renderer
thread.

Code with Poor Performance Code with Better Performance

When object data is large, the update bottleneck
becomes a limiting factor.
% Using rotate

figure

[x,y,z] = sphere(270);

s = surf(x,y,z,z,'EdgeColor','none');

axis vis3d

for ang = 1:360

 rotate(s,[1,1,1],1)

 drawnow

end

Using an hgtransform applies the transform
on the renderer side of the bottleneck.
% Using transform

figure

ax = axes;

[x,y,z] = sphere(270);

% hgtransform contains the surface

grp = hgtransform('Parent',ax);

s = surf(ax,x,y,z,z,'Parent',grp,...

 'EdgeColor','none');

view(3)

grid on

axis vis3d

% Apply the transform to the hgtransform content

tic

for ang = linspace(0,2*pi,360)

 tm = makehgtform('axisrotate',[1,1,1],ang);

 grp.Matrix = tm;

 drawnow

end

toc

 Use Low-Level Functions for Speed

17-19

Use Low-Level Functions for Speed

The features that make plotting functions easy to use also consume computer resources.
If you want to maximize graphing performance, use low-level functions and disable
certain automatic features.

Low-level graphics functions (e.g., line vs. plot, surface vs. surf) perform fewer
operations and therefore are faster when you are creating many graphics objects.

The low-level graphics functions are line, patch, rectangle, surface, text, image,
axes, and light

17 Optimize Performance of Graphics Programs

17-20

Using drawnow Efficiently

In this section...

“What Does drawnow Do?” on page 17-20
“How to Use drawnow” on page 17-21
“Achieve a Specific Frame Rate” on page 17-21

What Does drawnow Do?

Calling drawnow updates everything. It updates the screen and processes all events.
Calling drawnow initiates a sequence of steps:

1 Perform an update — Update and collect all changes made to the state of displayed
objects.

2 Send updates — Send data to the screen renderer.
3 Execute callbacks — Allow any pending callbacks to run.
4 Wait for pending events — Process pending events before returning execution to the

calling function.
5 drawnow returns — MATLAB resumes execution.
6 Renderer updates screen — UI and graphics objects are updated.

drawnow has options that limit the steps to make updating quicker:

• drawnow update — Maximum loop speed when updating graphs. Useful for keeping
up with user input or real-time data acquisition, but updates can be lost if renderer is
busy.

• Update graphics model and send updates if renderer is free. Otherwise return and
discard the update, which can cause frames to be lost in an animation.

• Send updates for both UI and graphics objects.
• Do not process events.

• drawnow expose — Synchronized loop and movie playback.

• Perform update.
• Send updates for both UI and graphics objects.
• Do not process events.

 Using drawnow Efficiently

17-21

MATLAB performs an effective drawnow in a number of conditions (see drawnow
documentation). However, judicious use of explicit calls to drawnow can improve
performance of code that frequently updates the screen.

How to Use drawnow

Calling drawnow blocks MATLAB execution until updates are passed to the screen and
pending events are processed. Some things to consider when using drawnow:

• What is your responsiveness criteria? For example, if you are animating a line graph,
can you update the display every 50 points instead of every point? See “Segmenting
Data to Reduce Update Times” on page 17-15.

• Are you streaming data and want to:

• Update a graph as quickly as possible. Some updates might be lost — use drawnow
update

• Update a graph as quickly as possible without loosing updates — use drawnow
expose

• Maintain a fully interactive UI application, with possible slower performance —
use drawnow

• Are you animating a sequence of graphs — use the getframe function to record a set
of frames and the movie function to playback the set.

Achieve a Specific Frame Rate

Animations typically do not need to run at frame rates exceeding 30 fps. You can
achieve a specific frame rate using the clock, etime, and drawnow functions.

This sample code animates a line graph at a specified frame rate (30 fps).

%% Create animatedline graph

x = linspace(0,100*pi,1e4);

ax = axes;

xlim([0 100*pi]);

ylim([-1 1]);

l = animatedline('Parent',ax);

drawnow;

%% Get start time

t1 = tic;

%% Update display at 30 fps

17 Optimize Performance of Graphics Programs

17-22

for i = 1:length(x)

 addpoints(l,x(i),sin(x(i)));

 t2 = toc(t1);

 if(t2 > 1/30)

 drawnow

 t1 = tic;

 end

end

If your objective is to update the display as fast as possible, use drawnow update and
reduce the for loop to:

for ix = 1:50:n-50

 addpoints(l,x(i),sin(x(i)));

 drawnow update;

end

For an example, see “Animating Line Graphs” on page 17-17.

 System Requirements for Graphics

17-23

System Requirements for Graphics

In this section...

“Recommended System Requirements” on page 17-23
“Upgrade Your Graphics Drivers” on page 17-23
“Features with OpenGL Requirements” on page 17-24

Recommended System Requirements

All systems support most of the common MATLAB graphics features. For the best results
with graphics, your system must have:

• At least 1 GB of GPU memory.
• Graphics hardware that supports a hardware-accelerated implementation of OpenGL

2.1 or later. Most graphics hardware released since 2006 is compliant. For advanced
graphics, OpenGL 3.0 or later is recommended.

• The latest versions of graphics drivers available from your computer manufacturer or
graphics hardware vendor.

Upgrade Your Graphics Drivers

Upgrade your graphics drivers to the latest versions available.

• On Windows systems, check your computer manufacturer website for driver updates,
such as Dell® or HP. If no updates are provided, then check your graphics hardware
vendor website, such as the AMD® website, NVIDIA® website, or Intel® website.

• On Linux® systems, use proprietary vendor drivers instead of open-source
replacements.

• On Mac OS X systems, the graphics drivers are part of the operating system. Use the
latest updates provided.

For more information on determining your graphics hardware, see opengl.

If MATLAB detects graphics drivers with known issues or graphics virtualization, then it
uses software OpenGL instead of your graphics hardware.

http://support.amd.com/en-us/download
http://www.nvidia.com/Download/index.aspx
http://www.intel.com/p/en_US/support/detect/graphics

17 Optimize Performance of Graphics Programs

17-24

Features with OpenGL Requirements

The graphics features in this table require certain versions of hardware-accelerated
OpenGL.

Feature Required
OpenGL
Version

With Required OpenGL
Version

Without Required OpenGL
Version

Sharp corners when
using wide lines

OpenGL 2.1
or later

Correct rendering of
transparent objects in
3-D views

OpenGL 2.1
or later

Graphics smoothing to
reduce the appearance
of jagged lines

OpenGL 3.0
or later

Alternatively, you can use software OpenGL or Painters to render graphics. However,
these rendering methods have some limitations:

• Software OpenGL is slower than hardware-accelerated OpenGL in some cases and
does not support some graphics features.

• Painters works well for 2-D graphics. However, it might not correctly draw
intersecting polygons.

For more information about renderers, see the Renderer property of the figure.

 Workarounds for Older Graphics Hardware

17-25

Workarounds for Older Graphics Hardware

Older graphics hardware or hardware with limited graphics memory can cause poor
performance. It is possible to improve performance with these changes:

• Use smaller figure windows.
• Set the figure GraphicsSmoothing property to 'off'.
• Set the axes SortMethod property to 'childorder'.
• Do not use transparency or, if you must use transparency, set the axes SortMethod

property to 'childorder'.

For the best results with graphics, upgrade your graphics drivers to the latest version
available. For more information, see “System Requirements for Graphics” on page 17-23.

17-26

18

set and get

18 set and get

18-2

Access Property Values

In this section...

“Object Properties and Dot Notation” on page 18-2
“Graphics Object Variables Are Handles” on page 18-4
“Listing Object Properties” on page 18-6
“Modify Properties with set and get” on page 18-6
“Multi Object/Property Operations” on page 18-7

Object Properties and Dot Notation

Graphing functions return the object or objects created by the function. For example:

h = plot(1:10);

h refers to the line drawn in the graph of the values 1 through 10.

Dot notation is a syntax for accessing object properties. This syntax uses the object
variable and the case-sensitive property name connected with a dot (.) to form an object
dot property name notation:

object.PropertyName

If the object variable is nonscalar, use indexing to refer to a single object:

object(n).PropertyName

Scalar Object Variable

If h is the line created by the plot function, the expression h.Color is the value of this
particular line’s Color property:

h.Color

ans =

 0 0.4470 0.7410

If you assign the color value to a variable:

 Access Property Values

18-3

c = h.Color;

The variable c is a double.

whos

 Name Size Bytes Class

 c 1x3 24 double

 h 1x1 112 matlab.graphics.chart.primitive.Line

You can change the value of this line’s Color property with an assignment statement:

h.Color = [0 0 1];

Use dot notation property references in expressions:

meanY = mean(h.YData);

Or to change the property value:

h.LineWidth = h.LineWidth + 0.5;

Reference other objects contained in properties with multiple dot references:

h.Annotation.LegendInformation.IconDisplayStyle

ans =

on

Set the properties of objects contained in properties:

ax = gca;

ax.Title.FontWeight = 'normal';

Nonscalar Object Variable

Graphics functions can return an array of objects. For example:

y = rand(5);

h = plot(y);

size(h)

ans =

 5 1

18 set and get

18-4

Access the line representing the first column in y using the array index:

h(1).LineStyle = '--';

Use the set function to set the LineStyle of all the lines in the array:

set(h,'LineStyle','--')

Appending Data to Property Values

With dot notation, you can use “end” indexing to append data to properties that contain
data arrays, such as line XData and YData. For example, this code updates the line
XData and YData together to grow the line. You must ensure the size of line’s x- and
y-data are the same before rendering with the call to drawnow or returning to the
MATLAB prompt.

h = plot(1:10);

for k = 1:5

 h.XData(end + 1) = h.XData(end) + k;

 h.YData(end + 1) = h.YData(end) + k;

 drawnow

end

Graphics Object Variables Are Handles

The object variables returned by graphics functions are handles. Handles are references
to the actual objects. Object variables that are handles behave in specific ways when
copied and when the object is deleted.

Copy Object Variable

For example, create a graph with one line:

h = plot(1:10);

Now copy the object variable to another variable and set a property value with the new
object variable:

h2 = h;

h2.Color = [1,0,0]

Assigning the object variable h to h2 creates a copy of the handle, but not the object
referred to by the variable. The value of the Color property accessed from variable h is
the same as that accessed from variable h2.

 Access Property Values

18-5

h.Color

ans =

 1 0 0

h and h2 refer to the same object. Copying a handle object variable does not copy the
object.

Delete Object Variables

There are now two object variables in the workspace that refer to the same line.

whos

 Name Size Bytes Class

 h 1x1 112 matlab.graphics.chart.primitive.Line

 h2 1x1 112 matlab.graphics.chart.primitive.Line

Now close the figure containing the line graph:

close gcf

The line object no longer exists, but the object variables that referred to the line do still
exist:

whos

 Name Size Bytes Class

 h 1x1 112 matlab.graphics.chart.primitive.Line

 h2 1x1 112 matlab.graphics.chart.primitive.Line

However, the object variables are no longer valid:

h.Color

Invalid or deleted object.

h2.Color = 'blue'

Invalid or deleted object.

To remove the invalid object variables, use clear:

clear h h2

18 set and get

18-6

Listing Object Properties

To see what properties an object contains, use the get function:

get(h)

MATLAB returns a list of the object properties and their current value:

 AlignVertexCenters: 'off'

 Annotation: [1x1 matlab.graphics.eventdata.Annotation]

 BeingDeleted: 'off'

 BusyAction: 'queue'

 ButtonDownFcn: ''

 Children: []

 Clipping: 'on'

 Color: [0 0.4470 0.7410]

...

 LineStyle: '-'

 LineWidth: 0.5000

 Marker: 'none'

...

You can see the values for properties with an enumerated set of possible values using the
set function:

set(h,'LineStyle')

 '-'

 '--'

 ':'

 '-.'

 'none'

To display all settable properties including possible values for properties with an
enumerated set of values, use set with the object variable:

set(h)

Modify Properties with set and get

You can also access and modify properties using the set and get functions.

The basic syntax for setting the value of a property on an existing object is:

 Access Property Values

18-7

set(object,'PropertyName',NewPropertyValue)

To query the current value of a specific object property, use a statement of the form:

returned_value = get(object,'PropertyName');

Property names are always character strings. You can use quoted strings or a variable
that is a character string. Property values depend on the particular property.

Multi Object/Property Operations

If the object argument is an array, MATLAB sets the specified value on all identified
objects. For example:

y = rand(5);

h = plot(y);

Set all the lines to red:

set(h,'Color','red')

To set the same properties on a number of objects, specify property names and property
values using a structure or cell array. For example, define a structure to set axes
properties appropriately to display a particular graph:

view1.CameraViewAngleMode = 'manual';

view1.DataAspectRatio = [1 1 1];

view1.Projection = 'Perspective';

To set these values on the current axes, type:

set(gca,view1)

Query Multiple Properties

You can define a cell array of property names and use it to obtain the values for those
properties. For example, suppose you want to query the values of the axes “camera mode”
properties. First, define the cell array:
camModes = {'CameraPositionMode','CameraTargetMode',...

'CameraUpVectorMode','CameraViewAngleMode'};

Use this cell array as an argument to obtain the current values of these properties:

get(gca,camModes)

18 set and get

18-8

ans =

 'auto' 'auto' 'auto' 'auto'

19

Using Axes Properties

• “Axes Aspect Ratio” on page 19-2
• “Display Text Outside Axes” on page 19-6
• “Overlay Axes with Different Sizes” on page 19-9
• “Graph with Multiple x-Axes and y-Axes” on page 19-12
• “Automatically Calculated Properties” on page 19-16
• “Line Styles Used for Plotting — LineStyleOrder” on page 19-20

19 Using Axes Properties

19-2

Axes Aspect Ratio

By default, 2-D graphs display in a rectangular axes that has the same aspect ratio
as the figure window. This makes optimum use of space available for plotting. Set the
aspect ratio with the axis function:

• axis normal — Sets the axis limits to span the data range along each axis and
stretches the plot to fit the figure window. This the default behavior.

• axis square — makes the current axes region square
• axis equal — sets the aspect ratio so that the data units are the same in every

direction
• axis equal tight — sets the aspect ratio so that the data units are the same in

every direction and then sets the axis limits to the minimum and maximum values of
the data.

For example, these statements create a elongated circle.

t = 0:pi/20:2*pi;

x = sin(t);

y = 2*cos(t);

plot(x,y)

grid on

These graphs show the effects of various axis command options:

 Axes Aspect Ratio

19-3

3-D Views

These statements create a cylindrical surface:

t = 0:pi/6:4*pi;

[x,y,z] = cylinder(4+cos(t),30);

surf(x,y,z)

These graphs show the effects of various axis command options:

19 Using Axes Properties

19-4

• axis normal — Sets the axis limits to span the data range along each axis and
stretches the plot to fit the figure window. This the default behavior.

• axis square — Creates an axes that is square regardless of the shape of the figure
window. The cylindrical surface is no longer distorted because it is not warped to fit
the window. However, the size of one data unit is not equal along all axes (the z-axis
spans only one unit while the x-axes and y-axes span 10 units each).

• axis equal — Makes the length of one data unit equal along each axis while
maintaining a nearly square plot box. It also prevents warping of the axis to fill the
window's shape.

• axis vis3d — Freezes aspect ratio properties to enable rotation of 3-D objects and
overrides stretching the axes to fill the figure. Use this option to keep settings from
changing while you rotate the scene.

 Axes Aspect Ratio

19-5

Note: To format aspect ratio using the axis function, call axis after creating the graph
or use the hold on command before plotting data.

Additional Commands for Setting Aspect Ratio

You can also control the aspect ratio of your graph more precisely using these functions:

• Specifying the relative scales of the x-, y-, and z-axes (data aspect ratio)
• Specifying the shape of the space defined by the axes (plot box aspect ratio)
• Specifying the axis limits

The following commands enable you to set these values.

Command Purpose

daspect Set or query the data aspect ratio
pbaspect Set or query the plot box aspect ratio
xlim Set or query x-axis limits
ylim Set or query y-axis limits
zlim Set or query z-axis limits

19 Using Axes Properties

19-6

Display Text Outside Axes

This example shows how to display text outside an axes by creating a second axes for the
text. MATLAB® always displays text objects within an axes. If you want to place a text
description alongside an axes, then you must create another axes to position the text.

Create an invisible axes, ax1, that encompasses the entire figure window by specifying
its position as [0,0,1,1]. Then, create a smaller axes, ax2, to contain the actual
plot. Create a line plot in the smaller axes by passing its axes handle, ax2, to the plot
function.

fig = figure;

ax1 = axes('Position',[0 0 1 1],'Visible','off');

ax2 = axes('Position',[.3 .1 .6 .8]);

t = 0:1000;

y = 0.25*exp(-0.005*t);

plot(ax2,t,y)

 Display Text Outside Axes

19-7

Define the string for the text description. Use a cell array to define multiline text.

descr = {'Plot of the function:';

 'y = A{\ite}^{-\alpha{\itt}}';

 ' ';

 'With the values:';

 'A = 0.25';

 '\alpha = .005';

 't = 0:1000'};

Set the larger axes to be the current axes since the text function places text in the
current axes. Then, display the text.

axes(ax1) % sets ax1 to current axes

text(.025,0.6,descr)

19 Using Axes Properties

19-8

The figure contains text next to the line plot.

 Overlay Axes with Different Sizes

19-9

Overlay Axes with Different Sizes

This example shows how to display the same set of data using different size axes.

Create a figure with five axes of different sizes by setting their Position properties. In
each axes plot the sphere function.

figure

ax(1) = axes('Position',[0 0 1 1]);

sphere

ax(2) = axes('Position',[0 0 .4 .6]);

sphere

ax(3) = axes('Position',[0 .5 .5 .5]);

sphere

ax(4) = axes('Position',[.5 0 .4 .4]);

sphere

ax(5) = axes('Position',[.5 .5 .5 .3]);

sphere

19 Using Axes Properties

19-10

Use the axes handles stored in array ax to turn off the display of the axes boxes so that
only the spheres are visible.

set(ax,'Visible','off')

 Overlay Axes with Different Sizes

19-11

Using five axes of different sizes gives the effect that the spheres appear different shapes
and sizes, even though each sphere is defined by the same data.

19 Using Axes Properties

19-12

Graph with Multiple x-Axes and y-Axes

This example shows how to create a graph using the bottom and left sides of the axes for
the first plot, and the top and right sides of the axes for the second plot.

Define the data to plot.

x1 = 0:0.1:40;

y1 = 4.*cos(x1)./(x1+2);

x2 = 1:0.2:20;

y2 = x2.^2./x2.^3;

Use the line function to plot y1 versus x1 using a red line. Set the color for the x-axis
and y-axis to red.

figure

line(x1,y1,'Color','r')

ax1 = gca; % current axes

ax1.XColor = 'r';

ax1.YColor = 'r';

 Graph with Multiple x-Axes and y-Axes

19-13

Create a second axes in the same location as the first axes by setting the position of the
second axes equal to the position of the first axes. Specify the location of the x-axis as
the top of the graph and the y-axis as the right side of the graph. Set the axes Color to
'none' so that the first axes is visible underneath the second axes.

ax1_pos = ax1.Position; % position of first axes

ax2 = axes('Position',ax1_pos,...

 'XAxisLocation','top',...

 'YAxisLocation','right',...

 'Color','none');

19 Using Axes Properties

19-14

Use the line function to plot y2 versus x2 on the second axes. Set the line color to black
so that it matches the color of the corresponding x-axis and y-axis.

line(x2,y2,'Parent',ax2,'Color','k')

 Graph with Multiple x-Axes and y-Axes

19-15

The graph contains two lines that correspond to different axes. The red line corresponds
to the red axes. The black line corresponds to the black axes.

See Also
axes | gca | line

Related Examples
• “Create Graph with Two y-Axes”

19 Using Axes Properties

19-16

Automatically Calculated Properties

When plotting functions create graphs, many of the axes properties that are under
automatic control adjust to best display the graph. These properties adjust automatically
when their associated mode property is set to auto (which is the default). The following
table lists the axes automatic-mode properties.

Note: When setting any mode property to 'manual' from within a function, you should
call drawnow first to ensure the corresponding property has been updated to the latest
value.

Mode Property What It Controls

CameraPositionMode Positioning of the viewpoint
CameraTargetMode Positioning of the camera target in the axes
CameraUpVectorMode The direction of “up” in 2-D and 3-D views
CameraViewAngleMode The size of the projected scene and stretch-to-fit behavior
CLimMode Mapping of data values to colors
DataAspectRatioMode Relative scaling of data units along x-, y-, and z-axes and

stretch-to-fit behavior
PlotBoxAspectRatioMode Relative scaling of plot box along x-, y-, and z-axes and stretch-

to-fit behavior
TickDirMode Direction of axis tick marks (in for 2-D, out for 3-D)
XLimMode

YLimMode

ZLimMode

Limits of the respective x, y, and z axes

XTickMode

YTickMode

ZTickMode

Tick mark spacing along the respective x-, y-, and z-axes

XTickLabelMode Tick mark labels along the respective x-, y-, and z-axes

 Automatically Calculated Properties

19-17

Mode Property What It Controls

ZTickLabelMode

YTickLabelMode

For example, these statements graph two lines:

x = 1:10;

y = 1:10;

plot(x,y)

hold on

plot(x,y.^2)

The second plot statement causes the axes YLim property to change from [0,10] to
[0,100].

19 Using Axes Properties

19-18

This is because YLimMode is auto, which means the axes recompute the axis limits
whenever necessary.

If you assign a value to a property controlled by an automatic-mode property, MATLAB
sets the mode property to manual. When the mode property is manual, the axes does not
automatically recompute the property value.

For example,

x = 1:10;

y = 1:10;

plot(x,y)

hold on

ax = gca;

 Automatically Calculated Properties

19-19

ax.XLim = [1,10];

ax.YLim = [1,20];

plot(x,y.^2)

Setting values for the XLim and YLim properties changes the XLimMode and YLimMode
properties to manual. The second plot statement draws a line that is clipped to the axis
limits instead of causing the axes to recompute its limits.

19 Using Axes Properties

19-20

Line Styles Used for Plotting — LineStyleOrder

The axes LineStyleOrder property is analogous to the ColorOrder property. It
specifies the line styles to use for multiline plots created with the line-plotting functions.

Axes increments the line style only after using all of the colors in the ColorOrder
property. It then uses all the colors again with the second line style, and so on.

For example, define a default ColorOrder of red, green, and blue and a default
LineStyleOrder of solid, dashed, and dotted lines.

set(groot,'defaultAxesColorOrder',[1 0 0;0 1 0;0 0 1],...

 'defaultAxesLineStyleOrder','-|--|:')

Then plot some multiline data.

t = 0:pi/20:2*pi;

a = ones(length(t),9);

for i = 1:9

 a(:,i) = sin(t-i/5)';

end

plot(t,a)

 Line Styles Used for Plotting — LineStyleOrder

19-21

Plotting functions cycle through all colors for each line style.

The default values persist until you quit MATLAB. To remove default values during your
MATLAB session, use the reserved word remove.

set(groot,'defaultAxesLineStyleOrder','remove')

set(groot,'defaultAxesColorOrder','remove')

See “Default Property Values” for more information.

19-22

